PHYS-4601 Homework 15 Due 14 Feb 2014

This homework is due in the dropbox outside 2L26 by 11:59PM on the due date. If you wish to turn it in ahead of time, you may email a PDF or give a hardcopy to Dr. Frey.

1. Two Particles and the Square Well based on Griffiths 6.3

Two particles move in the potential

$$
V(x_1, x_2) = aV_0 \delta(x_1 - x_2) + \begin{cases} 0 & 0 < x_1, x_2 < a \\ \infty & \text{otherwise} \end{cases}
$$
 (1)

In otherwords, the two particles are each trapped in an infinite square well between 0 and a , and they interact with each other through the delta function "contact term." Recall that the single-particle wavefunctions and energies are (for $0 < x < a$)

$$
\psi_n(x) = \sqrt{\frac{2}{a}} \sin\left(\frac{n\pi x}{a}\right) , \quad E_n = \frac{\hbar^2}{2m} \left(\frac{n\pi}{a}\right)^2 , \quad n = 1, 2, \cdots \tag{2}
$$

- (a) In the case that $V_0 = 0$, write the ground state wavefunction and energy if the two particles are identical spin-0 bosons.
- (b) Now let $V_0 \neq 0$. Still assuming the two particles are bosons, what is the effect on the ground state energy to first order in V_0 ? *Hint*: Angle addition formulas will help.
- (c) By comparing the 0th order and 1st order energy contributions, argue that $ma^2V_0/\hbar^2 \ll 1$ for perturbation theory to be a good approximation.
- (d) Repeat parts [\(a\)](#page-0-0) and [\(b\)](#page-0-1) in the case that the two particles are identical fermions. Assume that the spin state is symmetric (for example, both fermions are spin-1/2 with spin up).

2. Not-Quite-Square Well

Consider a particle moving in a 1D well of potential

$$
\begin{cases}\nV_0 x/a & 0 < x_1, x_2 < a \\
\infty & \text{otherwise}\n\end{cases} \tag{3}
$$

Assume that $\epsilon = ma^2V_0/\hbar^2 \ll 1$. You will want to recall equation [\(2\)](#page-0-2) again.

- (a) Show that the first order contribution to the energy is $E_n^1 = V_0/2$ for all n.
- (b) Now consider the ground state of the system. Recalling that the first order correction to the ground state can be written as

$$
|\psi_1^1\rangle = \sum_{n=2}^{\infty} c_n |\psi_n^0\rangle \;, \tag{4}
$$

use Maple's seq and int commands to make a list of the coefficients c_n for $n = 2, \dots 10$. Attach a copy of your Maple code. You should work in units where $a = 1$ and express your answer in terms of the parameter ϵ .

(c) Use Maple to plot the uncorrected ground state wavefunction and the wavefunction with first order terms (including corrections from the $n = 2, \dots 10$ states) on the same plot. In order to see the difference, use an exaggerated value of $\epsilon = 3$.

3. Stark Effect based on Griffiths 6.36

The presence of an external electric field $E_0\hat{z}$ shifts the energy levels of a hydrogen atom, which is called the Stark effect. Consider the hydrogen atom to be described by the Coulomb potential; the external electric field introduces a perturbation

$$
H_1 = eE_0 z = eE_0 r \cos \theta \tag{5}
$$

We have already seen on homework that the expectation value of this Hamiltonian in the ground state $n = 1$ vanishes, so there is no shift in the ground state energy. In this problem, we consider the degenerate perturbation theory of the $n = 2$ states. As spin does not enter, do not consider it in this problem.

(a) The four states $|2, 0, 0\rangle$, $|2, 1, 0\rangle$, and $|2, 1, \pm 1\rangle$ are degenerate at 0th order. Label these states sequentially as $i = 1, 2, 3, 4$. Show that the matrix elements $W_{ij} = \langle i|H_1|j \rangle$ form the matrix

$$
W = -3aeE_0 \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix},
$$
 (6)

where empty elements are zero and a is the Bohr radius. *Hint*: Note that L_z commutes with H_1 , so only states with the same quantum number m can have nonzero matrix elements; this will save you quite a bit of work. Then use the angular wavefunctions to see that all the diagonal elements of W must vanish. Finally, use the explicit wavefunctions to evaluate the remaining matrix elements of W (there should only be one independent one left).

- (b) Diagonalize this matrix to show that $|\pm\rangle = (1/$ √ $(2)(|2,0,0\rangle \pm |2,1,0\rangle)$ are eigenstates of W. Find the first order shift in energies of $|\pm\rangle$. Hint: Note that the corrected eigenstates may still have contributions from other values of the principal quantum numbers n , but that doesn't quite matter.
- (c) Finally, show that the states $|\pm\rangle$ have a nonzero dipole moment $p_z = -e\langle z \rangle$ and calculate it. You should not need to do any more calculations; just use your answer from part [\(b\)](#page-1-0).