PHYS-4601 Homework 6 Due 18 Oct 2012

This homework is due in the dropbox outside 2L26 by 11:59PM on the due date. If you wish to turn it in ahead of time, you may email a PDF or give a hardcopy to Dr. Frey.

1. Proofs About Stationary States

- (a) Rephrasing Griffiths 2.1(b) Consider the spatial part of a stationary state $\psi(\vec{x})$ (that is, $\Psi(\vec{x},t) = \psi(\vec{x})e^{-iEt/\hbar}$). Show that $\psi(\vec{x})$ can be chosen real as follows. Argue that, for any ψ that solves the time-independent Schrödinger equation, so does ψ^* . Use that to show that the real and imaginary parts of ψ are also solutions with the same energy. Finally, argue that normalizability of ψ implies normalizability of its real and imaginary parts.
- (b) Griffiths 2.2 rephrased Suppose that the energy E of a stationary state in one dimension is less than the minimum value of the potential. Use the time-independent Schrödinger equation to show that the second derivative of the wavefunction always has the same sign as the wavefunction. Then use that fact to argue qualitatively that such a wavefunction cannot be normalized, proving by contradiction that E must be greater than the minimum value of the potential.

2. The Probability Current and the Transmission Coefficient

Consider a conserved quantity Q (this could be electric charge or total probability in quantum mechanics) with a density ρ and current \vec{j} . These quantities satisfy the *continuity equation*

$$\frac{\partial \rho}{\partial t} = -\vec{\nabla} \cdot \vec{j} \,. \tag{1}$$

Remember that the divergence represents the lines of \vec{j} heading out through a surrounding surface (think of the divergence theorem and Gauss's law in electromagnetism). So this just says that that the change in the charge in a small volume is equal to the amount of charge flowing out through the surface surrounding the volume.

(a) Consider the probability density $\rho = |\Psi(x,t)|^2$. Use the Schrödinger equation to show that the probability current

$$\vec{j}(x,t) = \frac{i\hbar}{2m} \left(\Psi \vec{\nabla} \Psi^* - \Psi^* \vec{\nabla} \Psi \right)$$
⁽²⁾

satisfies the continuity equation.

Suppose that we have a potential barrier or well in 1D with incoming wave $\Psi_{in} = Ae^{ikx-i\omega t}$, reflected wave $\Psi_{ref} = Be^{-ikx-i\omega t}$, and transmitted wave $\Psi_{trans} = Ce^{ik'x-i\omega t}$. The total wave function to the left of the potential barrier/well is $\Psi_{in} + \Psi_{ref}$ and is just Ψ_{trans} to the right. Generally, if the potential is different on the different sides of the barrier/well, $k' \neq k$.

- (b) Show that the probability current to the left of the barrier is $\vec{j}_{in} + \vec{j}_{ref}$ (the currents of Ψ_{in}, Ψ_{ref} respectively).
- (c) Since the magnitude of the probability currents determine the probability carried off in the reflected and transmitted waves, we should define the reflection and transmission coefficients as

$$R = \left| \frac{\vec{j}_{ref}}{\vec{j}_{in}} \right| , \quad T = \left| \frac{\vec{j}_{trans}}{\vec{j}_{in}} \right| . \tag{3}$$

Find R and T in terms of the variables A, B, C, k, k'.

3. Numerical Determination of Energy Eigenvalue some combination of Griffiths 2.54 and 2.51

Consider the potential

$$V(x) = -\frac{\hbar^2 a^2}{m} \operatorname{sech}^2(ax) .$$
(4)

Find the ground state energy using the numerical "wag the dog" method with Maple, as follows:

(a) Show that the Schrödinger equation for a bound state can be written in terms of dimensionless variables as

$$\frac{d^2\psi}{d\xi^2}(\xi) + \left(2\operatorname{sech}^2(\xi) - \kappa^2\right)\psi(\xi) = 0 , \qquad (5)$$

where κ is a positive constant.

(b) The ground state should be an even function, so if we ignore normalization, we can choose initial conditions $\psi(0) = 1$, $\psi'(0) = 0$. Starting with $\kappa^2 = 0.99$, enter the Schrödinger equation and initial conditions into Maple and solve the ODE numerically over the range $\xi = 0 - 10$. Then plot the solution. You may find the following Maple code helpful (note that we rename variables for ease of typing):

```
with(plots):
schr := diff(u(x),x$2)+(2*sech(x)^2-0.99)*u(x) = 0
init1 := u(0) = 1
init2 := (D(u))(0) = 0
psi := dsolve({init1, init2, schr}, numeric, range = 0 .. 10)
psiplot := odeplot(psi)
display(psiplot)
```

Attach a printout of your code with results.

- (c) What happens to the wavefunction as ξ gets large? By increasing your chosen value of κ^2 to 1.01, you should be able to get the "tail" of the wavefunction to flip over. Since the correct wavefunction should go to zero at large ξ , this means you have bracketed the correct eigenvalue for κ^2 . Choose successively closer together values of κ^2 to find the eigenvalue down to three decimal places. What's the ground state energy?
- (d) This potential is exactly solvable, and the (unnormalized) ground state wavefunction is $\psi(x) = \operatorname{sech}(ax)$. Plot both your numerical wavefunction and the exact one together on one plot and attach a hardcopy of your code and plot.
- (e) Now suppose we cut the potential in half to $V(x) = -(\hbar^2 a^2/2m)\operatorname{sech}^2(ax)$. Using the same method, find the ground state energy. Numerically determined quantities should be good to three decimal places. Attach a plot of your unnormalized ground state wavefunction in the same dimensionless variables as above.