
PHYS-4601 Homework 20 Due 28 Mar 2013

This homework is due in the dropbox outside 2L26 by 11:59PM on the due date. If you wish to
turn it in ahead of time, you may email a PDF or give a hardcopy to Dr. Frey.

1. The Path Integral and Ehrenfest’s Theorem

As we’ve seen in the lecture notes, the probability amplitude of a transition from one given
state at time ti to another state at time tf , as well as the expectation value of any variable O
(called an operator in Hamiltonian quantum mechanics), can be given by the path integrals∫

Dx eiS/h̄ , 〈O〉 =

∫
DxOeiS/h̄ , (1)

where S is the action of the system, given appropriate boundary conditions and normalization
(which we intentionally leave vague). There is one other property of functional integrals that
we haven’t discussed yet: ∫

Dx δ

δx(t)
(anything) = 0 , (2)

where δ/δx(t) is the functional derivative. This basically says that the integral of a total
derivative is zero (we throw away boundary terms on configuration space; heuristically, we are
integrating functions that go to zero as x→ ±∞).

In this problem, consider a system with Lagrangian L = (m/2)ẋ2−V (x) and action S =
∫
dtL.

(a) Use (2) to show that the expectation value of x follows the classical Euler-Lagrange equa-
tion 〈

δS

δx(t)

〉
= 0 or equivalently m

d2

dt2
〈x〉 = −

〈
dV

dx
(x)

〉
. (3)

(b) Derive the Hamiltonian associated with the given Lagrangian. Then go back to our discus-
sion of Ehrenfest’s theorem from the fall (you can also find this in the Griffiths textbook).
Show that the first order differential equations that determine d〈x〉/dt and d〈p〉/dt imply
equation (3).

(c) In this part, set the potential V = 0. By the method of your choice (hint : think about
part (a)), show that the expectation value 〈x(t)x(t′)〉 satisfies the differential equation(

m
d2

dt2

)
〈x(t)x(t′)〉 = −ih̄δ(t− t′) . (4)

2. The Double-Slit Experiment and Aharonov-Bohm Effect

This problem will consider the classic double-slit experiment from the path integral point of
view along with a version with a twist.

(a) In the double-slit experiment illustrated below, two paths dominate the path integral for
particles emitted at A and measured at D: from A to B to D with constant speed and



from A to C to D at constant speed (the figure is not to scale).
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That means the amplitude for measurement of a particle at D is

M =

∫
Dx eiS/h̄ ≈ eiSA→B→D/h̄ + eiSA→C→D/h̄ . (5)

Assume that the two slits at B and C are separated by a distance d which is very small
compared to the distance between the two screens, so that segments BD and CD make
the same angle θ with respect to the horizontal, and ignore the size of the slits. Show that
the probability of observing the particle at D is proportional to cos2(πd sin θ/λ), where
λ = 2πh̄/p is the de Broglie wavelength. Hint: The length of each path ABD or ACD is
much longer than the difference in path lengths, so you will want to do an expansion in
the difference. Remember that both paths must last the same length of time, and use the
total path length to determine the momentum.

(b) Next, assume the particle has charge q but that the scalar potential is zero. Recall that

the Lagrangian for a charged particle in a vector potential is L = (m/2)~̇x
2

+ q~̇x · ~A and
show that the probability for measuring the particle at D becomes

P ∝ cos2
[
πd

λ
sin θ +

q

2

∮
~A · d~l

]
, (6)

where the integral is from A→ C → D → B → A.

(c) Now consider a solenoid added to the experiment (the blue circle in the figure below) with
a magnetic field pointed out of the paper. The particle cannot penetrate the solenoid.
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Now use Stokes’s Theorem (aka the curl theorem; see Griffiths’s EM Theory textbook if
necessary) to show that

P ∝ cos2
[
πd

λ
sin θ +

q

2
ΦB

]
, (7)

where ΦB is the flux of the magnetic field through the solenoid. Amazingly enough,
this shows that the magnetic field influences the interference pattern of the particle, even
though the particle (or its wavefunction) cannot enter a region with a nonzero magnetic
field! This is called the Aharonov-Bohm effect.
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