PHYS-4601 Homework 2 Due 20 Sept 2012

This homework is due in the dropbox outside 2L26 by 11:59PM on the due date. If you wish to turn it in ahead of time, you may email a PDF or give a hardcopy to Dr. Frey.

1. Boundary Conditions and Operators

Consider a particle in 1D confined to the line segment $0 < x < L$ (note that the Hamiltonian is not specified). All wavefunctions must satisfy Dirichlet boundary conditions $\psi(0) = \psi(L) = 0$. It is easy to see that functions with these boundary conditions and the usual inner product

$$
\langle \psi | \phi \rangle = \int_0^L dx \, \psi^*(x) \phi(x) \tag{1}
$$

form a Hilbert space.

- (a) Show that momentum $p \simeq -i\hbar d/dx$ satisfies the Hermiticity condition $\langle \psi | p | \phi \rangle = (\langle \phi | p | \psi \rangle)^*$.
- (b) Argue briefly that any eigenstate of p must be an eigenstate of p^2 .
- (c) Find the eigenstates and eigenvalues of the operator p^2 in this Hilbert space. Why aren't the eigenstates of p^2 also eigenstates of p? *Hint:* Ask if p acting on any wavefunction in this Hilbert space always gives another wavefunction in this Hilbert space.
- (d) Now change the boundary conditions to *Neumann* boundary conditions $\left(\frac{d\psi}{dx}\right) = 0$ at $x = 0, L$). Does p satisfy the Hermiticity condition? Is p a linear operator on this new Hilbert space?

The lesson of this problem is to be careful with naive assumptions; boundary conditions can have a nontrivial effect.

2. Projectors and Dyad Operators

Start with a 3D Hilbert space with orthonormal basis $|1\rangle$, $|2\rangle$, $|3\rangle$. Consider 2 states

$$
|\alpha\rangle = i|1\rangle - 2|2\rangle - i|3\rangle , \quad |\beta\rangle = i|1\rangle + 2|3\rangle . \tag{2}
$$

(a) Show that

$$
|\alpha'\rangle = |\alpha\rangle - |\beta\rangle\langle\beta|\alpha\rangle/\langle\beta|\beta\rangle
$$
\n(3)

is orthogonal to β . This process of orthogonalizing vectors is called the Gram-Schmidt process and can be used to construct an orthonormal basis given enough linearly independent vectors.

(b) Griffiths problem 3.22(c) Consider the operator $A = |\alpha\rangle\langle\beta|$. Is this Hermitean? Write A as a matrix in the orthonormal basis given.

3. Functions of Operators

(a) Suppose $|\lambda\rangle$ is an eigenfunction of $\mathcal{O}, \mathcal{O}(\lambda) = \lambda |\lambda\rangle$. For any function $f(x)$ that can be written as a power series

$$
f(x) = \sum_{n} f_n x^n , \qquad (4)
$$

we can define

$$
f(\mathcal{O}) = \sum_{n} f_n \mathcal{O}^n . \tag{5}
$$

Show that

$$
f(\mathcal{O})|\lambda\rangle = f(\lambda)|\lambda\rangle . \tag{6}
$$

Does this result hold if the power series includes negative powers?

- (b) What are the eigenstates $|\lambda\rangle$ and eigenvalues of the operator $T_a = \exp[-ipa/\hbar]$? Assume the states are functions on $-\infty < x < \infty$ and give the most general form for an eigenstate $|\lambda\rangle$. Hint: Do different momentum eigenstates have the same eigenvalue?
- (c) Show that T_a translates a wavefunction by a distance a . That is, show that

$$
T_a|\psi\rangle \simeq \psi(x-a) \tag{7}
$$

in the position basis. Show that $\langle x + a|\lambda \rangle$ is equal to a phase times $\langle x|\lambda \rangle$ for an eigenstate $|\lambda\rangle$ of T_a using the results of part (b). *Hint*: Think about the wavefunction's Taylor series around x.