PHYS-4601 Homework 16 Due 28 Feb 2013

This homework is due in the dropbox outside 2126 by 11:59PM on the due date. If you wish to
turn it in ahead of time, you may email a PDF or give a hardcopy to Dr. Frey.

1. Some More Details of Fine Structure

In this problem, we will fill in a few more details of the derivation of the first-order contribution
to the hydrogen atom fine structure.

(a)

(c)

Griffiths 6.12 Back in homework assignment 5, we showed that (5?/2m) = —(1/2)(V(Z))
for any stationary state of the Coulomb potential (virial theorem). Use the virial theorem

to prove that
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(a is the Bohr radius as usual).

Griffiths 6.17 Combine the first-order relativistic correction (lecture notes or Griffiths
equation [6.57]) and the spin-orbit coupling correction (notes or Griffiths equation [6.65])
to the hydrogen atom stationary states in order to derive
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which is the total energy eigenvalue including the fine structure. Here, a = €?/4mephc is
the fine structure constant. Hint: It will help to write the (zeroth-order) Bohr energies
in terms of the fine structure constant. You may also try to simplify using the fact that
j =¢+1/2 and just working with both cases to get the same answer.

At the n = 2 level, how many different energies are there, and what are their degeneracies?

2. Weak-Field Zeeman Effect

In the class notes, we stated that placing a hydrogen atom in a constant magnetic field B2
introduces a contribution to the hydrogen atom of H; = (e/2m)By(L, +2S). If this contribu-
tion is larger than the energy level splitting due to fine structure, this gives the “strong-field”
Zeeman effect that we discussed in class. In this problem, consider the opposite limit, in which
H; is smaller than the fine structure splitting. In this case, we include the fine structure
corrections in the “unperturbed” Hamiltonian Hy and treat H; as the perturbation to that.

(a)

With fine structure included, the eigenstates of Hy are identified by n, total angular mo-
mentum quantum number j, its z component m;, and the total orbital angular momentum
quantum number ¢ (as well as total spin s = 1/2); the z-components my and mg are not
good quantum numbers. Write Hy = (¢/2m)By(J, + S.) since J = L + S and show that
the change in energy due to By is
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To do this, you will need to know that the eigenstate of J?, J,, and L? is written
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in terms of the eigenstates of L?, L., and S,.

(b) The quantity in square brackets in (3) is called the Landé g factor. Show that the g factor

can also be written as o
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— : (5)
2j(j+1)
which is the form given in Griffiths. You can start with (5) and try j = £+ 1/2 separately
to get the form given in (3).
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3. Hyperfine Structure Griffiths 6.27
Show that
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where 7; is a component of the unit vector 7 = sin 6 cos ¢& + sin €sin ¢y + cosfz. Since the
spherical harmonic Y = 1/y/4r is constant, use this result to show that
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in ¢ = 0 states of hydrogen (including the ground state). Note: You will not need to do any
radial integrals in this problem!
4. Anharmonic Oscillator

Consider a particle moving in the potential

1
V(z) = imw%z +ga? (8)
where ¢ is considered to be small, so this potential can be treated as a perturbation of a
harmonic oscillator. Find the correction to the energy of the harmonic oscillator ground state

|0) at both first and second order in g.
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