Quantum Mechanics I PHYS-3301 December Test

Dr. Andrew Frey

3 Dec 2012

Instructions:

- Do not turn over until instructed. You will have 3 hours to complete this test.
- No electronic devices or hardcopy notes are allowed.
- INSTRUCTIONS REGARDING THE QUESTIONS WILL GO HERE.
- Only the lined pages of your exam book will be graded. Use the blank pages for scratch work only.

Useful Concepts & Formulae:

- Notation and nomenclature
	- Frames S and S' are in standard configuration if their spacetime origins $(t, \vec{x}) = 0$ and $(t', \vec{x}') = 0$ overlap, their spatial axes point in the same directions, and their relative velocity is along x .
	- The speed of light is $c = 2.998 \times 10^8$ m/s = 1 lightsecond/second.
	- ≈ means "approximately equal to" and ≡ means "is defined as."
	- The CM frame is the frame in which the total spatial momentum is zero.
	- Einstein summation convention: repeated indices are summed.
- Galilean Relativity/Newtonian Mechanics
	- Galilean boost $\vec{x}' = \vec{x} \vec{v}t$, $\vec{u}' = \vec{u} \vec{v}$, $\vec{p}' = \vec{p} m\vec{v}$, $k' = k \vec{p} \cdot \vec{v} + (1/2)mv^2$
	- Kinetic energy for many particles $K = K_{int} + (1/2)MV^2$

$$
M = \sum m_i , \quad \vec{V} = \frac{1}{M} \sum m_i \vec{u}_i
$$

- For two particles $K_{int} = (1/2)\mu u^2$ for relative velocity \vec{u} and reduced mass $\mu = m_1 m_2/M$

- Statistical Distributions
	- If the probability of being at \vec{x}, \vec{p} in phase space is $P(\vec{x}, \vec{p})$, the average of $\mathcal{O}(\vec{x}, \vec{p})$ is

$$
\langle \mathcal{O} \rangle = \int d^3 \vec{x} \int d^3 \vec{p} \mathcal{O}(\vec{x}, \vec{p}) P(\vec{x}, \vec{p})
$$

- Boltzmann factor $P(\vec{x}_1, \vec{p}_1)/P(\vec{x}_2, \vec{p}_2) = \exp[-\Delta E/kT]$ with $\Delta E = E(\vec{x}_1, \vec{p}_1) E(\vec{x}_2, \vec{p}_2)$
- Maxwell distribution

$$
P(\vec{v}) = \left(\frac{m}{2\pi kT}\right)^{3/2} e^{-mv^2/2kT}
$$

- 4-vectors and Lorentz transformations
	- The position 4-vector is x^{μ} with $x^0 = ct$.
	- The metric $\eta_{\mu\nu}$ can be written as a diagonal matrix with diagonal elements –1, 1, 1, 1, and the invariant interval is $ds^2 = \eta_{\mu\nu} dx^{\mu} dx^{\nu} = -c^2 dt^2 + d\vec{x}^2$.

– The Lorentz boost transformations (in standard configuration) are

$$
t' = \gamma(t - vx/c^2)
$$
, $x' = \gamma(x - vt)$, $y' = y$, $z' = z$, $\gamma = 1/\sqrt{1 - v^2/c^2}$.

- They can be written as $x^{\mu'} = \Lambda^{\mu'}_{\ \nu} x^{\nu'}$
- Lowered indices $a_{\mu} = \eta_{\mu\nu} a^{\nu}$ (both in frame S)
- Relativistic dot product $a \cdot b = \eta_{\mu\nu} a^{\mu} b^{\nu} = a_{\mu} b^{\mu} = -a^0 b^0 + \vec{a} \cdot \vec{b}$
- Velocities and Momenta
	- For a normal velocity $\vec{u} = d\vec{x}/dt$, the Lorentz transformation between two frames in standard configuration with relative velocity v is

$$
u'_x = \frac{u_x - v}{1 - vu_x/c^2} , \quad u'_{y,z} = \frac{u_{y,z}}{\gamma(v)(1 - vu_x/c^2)} .
$$

- The 4-velocity of a particle is $U^{\mu} = dx^{\mu}/d\tau$, where τ is the proper time along the particle's worldline. $U^0 = \gamma c$, $\vec{U} = \gamma d\vec{x}/dt$, so $d\vec{x}/dt = \vec{U}/U^0$.
- 4-momentum is $p^{\mu} = mU^{\mu}$. Energy $E = cp^0$ and momentum is the spatial part \vec{p} .
- $-U_{\mu}U^{\mu}=-c^2$ and $p_{\mu}p^{\mu}=-m^2c^2$ for a normal particle.
- The Doppler effect, in terms of the rest frame of the receiver, is

$$
\frac{\omega_R}{\omega_E} = \frac{\sqrt{1 - u_E^2/c^2}}{1 - \hat{k} \cdot \vec{u}_E/c} \;,
$$

where \hat{k} is the direction of travel of light and \vec{u}_E is the velocity of emitter relative to receiver.

• Gaussian integral

$$
\int_{-\infty}^{\infty} dx \, e^{-ax^2} = \sqrt{\frac{\pi}{a}}
$$