PHYS-4601 Homework 3 Due 29 Sept 2011

This homework is due in class on the due date. If you wish to turn it in ahead of time, you may email a PDF or give a hardcopy to Dr. Frey.

Throughout this assignment, ignore time dependence of wavefunctions and suppress time in your notation. That is, don't bother writing out that a wavefunction or state depends on time.

1. Boundary Conditions and Operators

Consider a particle in 1D confined to the line segment 0 < x < L (note that the Hamiltonian is not specified). All wavefunctions must satisfy Dirichlet boundary conditions $\psi(0) = \psi(L) = 0$. It is easy to see that functions with these boundary conditions and the usual inner product

$$\langle \psi | \phi \rangle = \int_0^L dx \, \psi^*(x) \phi(x) \tag{1}$$

form a Hilbert space.

- (a) Check that the momentum operator p satisfies the Hermiticity condition $\langle p \cdot \psi | \phi \rangle = \langle \psi | p \cdot \phi \rangle$.
- (b) Find the eigenstates and eigenvalues of the operator p^2 in this Hilbert space. Are any of the eigenstates of p^2 also eigenstates of the momentum operator p? Explain.
- (c) Presumably you have an apparent paradox. What is the resolution? *Hint:* Ask if p acting on any wavefunction in this Hilbert space always gives another wavefunction in this Hilbert space.
- (d) Now change the boundary conditions to *Neumann* boundary conditions $(d\psi/dx = 0)$ at x = 0, L. Does p satisfy the Hermiticity condition? Is p a linear operator on this new Hilbert space?

The lesson of this problem is to be careful with naive assumptions; boundary conditions can have a nontrivial effect.

2. Probabilities and Densities

One of the postulates is that the probability (density) for measuring eigenvalue λ of some observable for a system in state $|\psi\rangle$ is $|\langle\lambda|\psi\rangle|^2$, where $|\lambda\rangle$ is the corresponding eigenstate of the observable. For the rest of this problem, consider a state $|\psi\rangle$. You may work in one dimension. *Hint:* You will find it useful to relate this abstract inner product to the usual one on wavefunctions.

- (a) Show that the probability density for measurements of position is the square of the absolute value of the wavefunction, as expected.
- (b) Show that the probability density to measure momentum p is given by the square of the absolute value of the Fourier transform of the wavefunction (with appropriate normalization).
- (c) Finally, find the probability of measuring energy E if the corresponding eigenstate has wavefunction $\psi_E(x)$.

3. Unitary Operators

We've talked about Hermitian operators quite a bit. Unitary operators are another type of operator that are quite important in quantum mechanics. By definition, a unitary operator U satisfies $U^{\dagger} = U^{-1}$.

- (a) First, show that if $U|\psi\rangle = \lambda |\psi\rangle$ (ie, $|\psi\rangle$ is an eigenstate of U), then $|\psi\rangle$ is an eigenstate of U^{-1} with eigenvalue $1/\lambda$ Then use this fact to show that an eigenvalue λ of a unitary operator U satisfies $|\lambda|^2 = 1$.
- (b) Show that $U = \exp[iA]$ is unitary if the operator A is Hermitian. We define the exponential of an operator by a power series

$$\exp[iA] \equiv \sum_{n} \frac{1}{n!} (iA)^n = 1 + iA - \frac{1}{2}A^2 + \cdots$$
 (2)

Hint: You may want to show that $(AB)^{\dagger} = B^{\dagger}A^{\dagger}$.

(c) Using the expansion above, argue that the operator $\exp[ipa/\hbar]$, where p is momentum and a is a constant, translates a wavefunction by a distance a. That is, show that

$$e^{ipa/\hbar} \cdot \psi(x) = \psi(x+a)$$
 (3)

So that exponential carries out translations. We will find that unitary operators often represent transformations like this. Hint: Think about the wavefunction's Taylor series around x.

4. REMOVED

5. Homework Comments

The following questions are **ungraded**, but your answers are greatly appreciated. This will be the last time I ask this, but you can always feel free to comment.

- (a) On a scale of 1 to 10, with 1 being very easy, 10 very difficult, and 5 the average of homeworks from your physics classes last year, how difficult was this assignment?
- (b) On a scale of 1 to 10, with 1 being very short, 10 very long, and 5 the average of homeworks from your physics classes last year, how long was this assignment?