
PHYS-4601 Homework 17 Due 8 Mar 2012

This homework is due in the dropbox outside 2L26 by 11:59PM on the due date. If you wish to
turn it in ahead of time, you may email a PDF or give a hardcopy to Dr. Frey.

1. More Notes on Time-Dependent Perturbation Theory

In this problem, consider a Hamiltonian H = H0 + H1(t), where we know the eigenstates
|ψ0

n〉 and eigenvalues E0
n of H0 and where H1(t) is a small time-dependent contribution to the

Hamiltonian. We write the full time-dependent state as

|Ψ(t)〉 =
∑

n

cn(t)e
−iE0

n
t/h̄|ψ0

n〉 . (1)

(a) In class, we derived the formula for cn(t) to first order in perturbation theory, assuming
that H1(t) is small. Prove that those cn(t) satisfy the normalization condition

∑

n |cn|
2 = 1

to first order inH1 at all times. (See the lecture notes for the appropriate formula; equation
[9.17] in Griffiths is not general enough for this problem.)

(b) Suppose there are just two H0 eigenstates |1〉 = |ψ0
1〉 and |2〉 = |ψ0

2〉 with perturbation
Hamiltonian

〈1|H1|1〉 = 〈2|H1|2〉 = 0 , 〈1|H1|2〉 = 〈2|H1|1〉 =

{

0 t < 0 or t > T
V 0 ≤ t ≤ T

. (2)

If the initial state is |Ψ(t = 0)〉 = |1〉, find the probability that a measurement finds the
system in state |2〉 at time t = T to first order in H1. Hint : You may directly do the
integration or use the limit of the sinusoidal perturbation discussed in class.

2. NMR aka MRI easier version of Griffiths 9.20

Consider a spin-1/2 particle (for example, a proton) with gyromagnetic ratio γ in the presence
of a magnetic field

~B = B0ẑ +B1 cos(ωt)x̂−B1 sin(ωt)ŷ , B1 ≪ B0 (3)

at its fixed position. This is how an NMR (MRI) machine works; a proton sitting in a large
static magnetic field is exposed to a small radio-frequency magnetic field. This problem is
exactly solvable (as in the Griffiths problem), but you are to use first-order time-dependent
perturbation theory.

(a) The Hamiltonian is given by the usual interaction between a magnetic moment and mag-
netic field, H = −γ ~B · ~S. Show that the Hamiltonian can be written as H = H0 +H1(t),
where H0 has the same eigenstates as Sz with eigenvalues ±γB0h̄/2 and

H1 = −
γB1h̄

2

[

0 eiωt

e−iωt 0

]

. (4)

(b) At first order in the small field B1, find the probability that a particle which is spin-up
at t = 0 is measured to be spin-down at some later time t. For a given frequency ω, at
what times is this probability maximized (that is, if we want to flip as many proton spins
as possible, how long should we leave the radio-frequency pulse on)?



3. Fermi’s Golden Rule

Consider a sinusoidal perturbation Hamiltonian H1 = V e−iωt +V †e+iωt. In the class notes, we
found the probability for a transition from state |1〉 to |2〉 as a function of time and frequency
ω. In the following, define h̄ω0 = E2 − E1, the difference of the energy eigenvalues of the
unperturbed Hamiltonian H0. We will investigate the transition probability near ω = ω0 at
large t (at least as long as the probability stays small).

(a) At a fixed (and large) time, the probability is peaked at ω = ω0. Using L’Hospital’s rule
or just a power series expansion, find the peak transition probability as a function of time.

(b) Find the values of ω where the probability first vanishes on either side of ω = ω0. The
difference in these two values tells us the width of the peak.

(c) For large enough times, approximate the transition probability as a rectangle with the
peak value from part (a) and width given by half the difference in part (b). Integrate this
approximate probability function and argue that

P →
2π|V21|

2

h̄2
tδ(ω0 − ω) (5)

as t→ ∞.

This problem shows two things: first, transitions occur only to states at energies related by the
perturbation frequency and, second, that there is a constant transition rate (probability per
unit time) to the appropriate states. The relationship (5) is known as Fermi’s Golden Rule.
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