
PHYS-4601 Homework 17 Due 1 Mar 2012

This homework is due in the dropbox outside 2L26 by 11:59PM on the due date. If you wish to
turn it in ahead of time, you may email a PDF or give a hardcopy to Dr. Frey.

1. Some More Details of Fine Structure

In this problem, we will fill in a few more details of the derivation of the first-order contribution
to the hydrogen atom fine structure.

(a) Griffiths 6.12 Back in homework assignment 6, we showed that 〈~p2/2m〉 = −(1/2)〈V (~x)〉
for any stationary state of the Coulomb potential (virial theorem). Use the virial theorem
to prove that

〈

1

r

〉

=
1

n2a
(1)

(a is the Bohr radius as usual).

(b) Griffiths 6.17 Combine the first-order relativistic correction (lecture notes or Griffiths
equation [6.57]) and the spin-orbit coupling correction (notes or Griffiths equation [6.65])
to the hydrogen atom stationary states in order to derive
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which is the total energy eigenvalue including the fine structure. Here, α = e2/4πǫ0h̄c is
the fine structure constant. Hint: It will help to write the (zeroth-order) Bohr energies
in terms of the fine structure constant. You may also try to simplify using the fact that
j = ℓ± 1/2 and just working with both cases to get the same answer.

(c) At the n = 2 level, how many different energies are there, and what are their degeneracies?

2. Weak-Field Zeeman Effect

In the class notes, we stated that placing a hydrogen atom in a constant magnetic field B0ẑ
introduces a contribution to the hydrogen atom of H1 = (e/2m)B0(Lz +2Sz). If this contribu-
tion is larger than the energy level splitting due to fine structure, this gives the “strong-field”
Zeeman effect that we discussed in class. In this problem, consider the opposite limit, in which
H1 is smaller than the fine structure splitting. In this case, we include the fine structure
corrections in the “unperturbed” Hamiltonian H0 and treat H1 as the perturbation to that.

(a) With fine structure included, the eigenstates of H0 are identified by n, total angular mo-
mentum quantum number j, its z component mj, and the total orbital angular momentum
quantum number ℓ (as well as total spin s = 1/2); the z-components mℓ and ms are not
good quantum numbers. Write H1 = (e/2m)B0(Jz + Sz) since ~J = ~L+ ~S and show that
the change in energy due to B0 is

E1

n,j,mj,ℓ
=

eh̄

2m
B0mj

[

1± 1

2ℓ+ 1

]

. (3)

To do this, you will need to know that the eigenstate of J2, Jz, and L2 is written
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in terms of the eigenstates of L2, Lz, and Sz.

(b) The quantity in square brackets in (3) is called the Landé g factor. Show that the g factor
can also be written as
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which is the form given in Griffiths. You can start with (5) and try j = ℓ± 1/2 separately
to get the form given in (3).

3. Hyperfine Structure Griffiths 6.27

Show that
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where r̂i is a component of the unit vector r̂ = sin θ cosφx̂ + sin θ sinφŷ + cos θẑ. Since the
spherical harmonic Y 0

0
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4π is constant, use this result to show that
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in ℓ = 0 states of hydrogen (including the ground state). Note: You will not need to do any
radial integrals in this problem!

4. Anharmonic Oscillator

Consider a particle moving in the potential

V (x) =
1

2
mω2x2 + gx3 , (8)

where g is considered to be small, so this potential can be treated as a perturbation of a
harmonic oscillator. Find the correction to the energy of the harmonic oscillator ground state
|0〉 at both first and second order in g.
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