PHYS-4601 Homework 14 Due 26 Jan 2012

This homework is due in the dropbox outside 2L26 by 11:59PM on the due date. If you wish to turn it in ahead of time, you may email a PDF or give a hardcopy to Dr. Frey.

1. 3-Particle States a mix of Griffiths 5.7 and 5.33

Consider three particles, each of which is in one of the single-particle states $|\alpha\rangle$, $|\beta\rangle$, or $|\gamma\rangle$, which are orthonormal.

- (a) If the particles are bosons, write down the state where one particle is in each of $|\alpha\rangle$, $|\beta\rangle$, and $|\gamma\rangle$. Hint: This state must be symmetric under the exchange of any pair of the bosons.
- (b) How many linearly independent states can you form if the particles are fermions? Write down all the possible linearly independent states. Hint: Similarly to the above, these states must be antisymmetric under the exhange of any pair of the fermions.

2. Estimating Helium Better Griffiths 5.11 clarified

In this problem, we will estimate the ground state energy of a helium atom. We will imagine that the electron repulsion is a correction to the attraction between the electrons and the nucleus.

(a) Consider the states of a single electron around a helium nucleus (which has twice the charge of a proton). Argue that the "helium Bohr radius" $a_{\text{He}} = a/2$, where a is the usual Bohr radius, and that therefore the single-electron ground state wavefunction is given by

$$\langle \vec{x}|n=1, \ell=0, m=0 \rangle = \sqrt{\frac{8}{\pi a^3}} e^{-2r/a} \ .$$
 (1)

Next assume that the two electron helium groundstate is $|n=1,\ell=0,m=0\rangle_1|n=1,\ell=0$ $0, m = 0 \rangle_2 | s = 0, m_s = 0 \rangle$, where the total spin state is the antisymmetric singlet. (The spatial wavefunction is given by Griffiths eqn [5.30].) Briefly argue that the energy of this state, in the absence of electron repulsion, is given by Griffiths eqn [5.31].

- (b) Now find $\langle |\vec{x}_1 \vec{x}_2|^{-1} \rangle$ in this state, as follows:
 - 1. Use the trick of setting the z axis for \vec{x}_2 along \vec{x}_1 and the law of cosines to see $|\vec{x}_1 \vec{x}_2| = \sqrt{r_1^2 + r_2^2 2r_1r_2\cos\theta_2}$. 2. Do the angular integrals for \vec{x}_2 , noting that

$$\int_0^{\pi} d\theta \sin \theta f(\cos \theta) = \int_{-1}^1 dx f(x) .$$

Your result will have square roots of perfect squares, which are equal to absolute values. Be careful of that!

- 3. Carry out the r_2 integral in two parts, $0 < r_2 \le r_1$ and $r_1 < r_2 < \infty$.
- 4. Now do the \vec{x}_1 integrals.

Hint: The "exponential integrals" formula in the back cover of Griffiths will be helpful.

(c) Estimate the change in the ground state energy due to the electron repulsion as

$$\Delta E = \frac{e^2}{4\pi\epsilon_0} \left\langle \frac{1}{|\vec{x}_1 - \vec{x}_2|} \right\rangle . \tag{2}$$

Write ΔE in terms of the Bohr radius a and estimate its value in eV. Then add this to the energy from part (a) to get a rough estimate of the He ground state energy. Hint: Remember that the hydrogen ground state energy is $-\hbar^2/2ma^2 = -13.6$ eV.

3. Finishing Bell's Inequality Griffiths 4.50

Consider 2 distinguishable spin 1/2 particles in the singlet (s=0) total spin state. If \vec{a} and \vec{b} are two unit vectors, show that

$$\left\langle \left(\vec{a} \cdot \vec{S}^{(1)} \right) \left(\vec{b} \cdot \vec{S}^{(2)} \right) \right\rangle = -\frac{\hbar^2}{4} \vec{a} \cdot \vec{b} \ . \tag{3}$$

Hint: Think about a convenient choice of axes.