PHYS-3301 Homework 6 Due 26 Oct 2011

This homework is due in class on the due date. If you wish to turn it in ahead of time, you may email a PDF or give a hardcopy to Dr. Frey.

1. A Moving Object Barton 6.6 plus

A relativistic car moves along the x axis, passing x = 0 at t = 0. Its velocity is $u(t) = dx/dt = c/\cosh(\omega t)$. **Important:** In the following, you will find some integrals involving hyperbolic trig functions. You may use computer programs such as Maple or Mathematica to do them **only** if you cite the program you use and check the result of the indefinite integral by differentiating it and seeing that you get the integrand.

- (a) Sketch the worldline of the car on a spacetime diagram. Can a real car follow this path exactly?
- (b) Find the relation between the time t and the car's proper time τ . Choose integration constants so that $\tau = 0$ when t = 0. Be careful taking signs if you take a square root.
- (c) Find u as a function of τ and then the car's position x as a function of τ . *Hint:* Remember that u = dx/dt, not $dx/d\tau$. Once you have $u(\tau)$, you can get x by integrating $dx/d\tau = u(dt/d\tau)$. (Think about the chain rule.)
- (d) Since the car moves, it doesn't experience as much proper time as coordinate time t. Find the total time lag Δ over all time, which is defined as

$$\Delta = \lim_{t \to \infty} \left[t - \tau(t) \right] - \lim_{t \to -\infty} \left[t - \tau(t) \right] \; .$$

2. Velocity Addition

In the lecture notes, we argued that a boost by v_1 along x followed by a boost of v_2 also along x is the same as a boost along x by

$$v_3 = \frac{v_1 + v_2}{1 + v_1 v_2 / c^2} , \qquad (1)$$

but we didn't finish the proof.

(a) We needed to show that $\gamma(v_3) = \gamma(v_1)\gamma(v_2)(1 + v_1v_2/c^2)$. To do this, prove the following:

$$1 - \frac{v_3^2}{c^2} = \frac{(1 - v_1^2/c^2)(1 - v_2^2/c^2)}{(1 + v_1v_2/c^2)^2} , \qquad (2)$$

using v_3 as given in (1). This is $1/\gamma(v_3)^2$, so it proves what we want.

- (b) If $v_1 \leq c$ and $v_2 \leq c$, can v_3 ever exceed c?
- (c) Give a quick argument relating this velocity addition to the transformation of particle velocities to prove (1) indirectly.

3. Relative Velocities

I'm sitting in a lab in a particle accelerator, and I see two protons approaching each other on the x axis. One has velocity $u_1 = 3c/4$ and the other has velocity $u_2 = -3c/4$ in my frame.

(a) At what speed do I see them approach each other? To think about this, you might want to find their positions $x_1(t)$ and $x_2(t)$ and then figure out $d(x_2 - x_1)/dt$ just to get things straight in your head.

- (b) You might be surprised at your answer, since it should be bigger than c. Is anything real moving faster than c?
- (c) Find the velocity u' of one particle relative to the other (that is, the velocity of one particle in the rest frame of the other).