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Abstract

In this thesis, we survey the current research into self-complementary hypergraphs,
and present several new results.

We characterize the cycle type of the permutations on n elements with order equal
to a power of 2 which are k-complementing. The k-complementing permutations map
the edges of a k-uniform hypergraph to the edges of its complement. This yields a test
to determine whether a finite permutation is a k-complementing permutation, and
an algorithm for generating all self-complementary k-uniform hypergraphs of order
n, up to isomorphism, for feasible n. We also obtain an alternative description of
the known necessary and sufficient conditions on the order of a self-complementary
k-uniform hypergraph in terms of the binary representation of k.

We examine the orders of t-subset-regular self-complementary uniform hyper-
graphs. These form examples of large sets of two isomorphic t-designs. We restate
the known necessary conditions on the order of these structures in terms of the binary
representation of the rank k, and we construct 1-subset-regular self-complementary
uniform hypergraphs to prove that these necessary conditions are sufficient for all
ranks £ in the case where t = 1.

We construct vertex transitive self-complementary k-hypergraphs of order n for
all integers n which satisfy the known necessary conditions due to Potocénik and
Sajna, and consequently prove that these necessary conditions are also sufficient. We

also generalize Poto¢nik and Sajna’s necessary conditions on the order of a vertex

ii



transitive self-complementary uniform hypergraph for certain ranks k to give neces-
sary conditions on the order of these structures when they are t-fold-transitive. In
addition, we use Burnside’s characterization of transitive groups of prime degree to
determine the group of automorphisms and antimorphisms of certain vertex transi-
tive self-complementary k-uniform hypergraphs of prime order, and we present an
algorithm to generate all such hypergraphs.

Finally, we examine the orders of self-complementary non-uniform hypergraphs,
including the cases where these structures are t-subset-regular or ¢-fold-transitive. We
find necessary conditions on the order of these structures, and we present construc-

tions to show that in certain cases these necessary conditions are sufficient.
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Self-complementary uniform

hypergraphs



Chapter 1

Introduction

1.1 Definitions

For a finite set V and a positive integer k, let V*) denote the set of all k-subsets of V.
A hypergraph with vertex set V' and edge set F is a pair (V, E'), in which V' is a finite
set and F is a collection of subsets of V. A hypergraph (V, E) is called k-uniform (or
a k-hypergraph) if E is a subset of V*). The parameters k and |V| are called the rank
and the order of the k-hypergraph, respectively. The vertex set and the edge set of
a hypergraph X will often be denoted by V' (X) and E(X), respectively. Note that a
2-hypergraph is a graph.

An isomorphism between k-hypergraphs X and X’ is a bijection ¢ : V(X) —
V(X’) which induces a bijection from E(X) to E(X'). If such an isomorphism exists,
the hypergraphs X and X' are said to be isomorphic. An automorphism of X is
an isomorphism from X to X. The set of all automorphisms of X will be denoted
by Aut(X). Clearly, Aut(X) is a subgroup of Sym(V (X)), the symmetric group of
permutations on V(X).

The complement X© of a k-hypergraph X = (V, E) is the hypergraph with vertex
set V and edge set E¢ = VW) \ E. A k-hypergraph X is called self-complementary
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if it is isomorphic to its complement. An isomorphism between a self-complementary
k-hypergraph X = (V, E) and its complement X is called an antimorphism of X.
The set of all antimorphisms of X will be denoted by Ant(X). It is easy to check
that Aut(X) U Ant(X) is a subgroup of Sym(V), and that Aut(X) is an index-2
subgroup of Aut(X) U Ant(X). Also, it is clear that Aut(X) = Aut(X%) when X is
self-complementary. An antimorphism of a self-complementary k-hypergraph is often
called a k-complementing permutation.

Let X = (V, E) be a k-hypergraph, let ¢t be a positive integer, ¢t < k, and let
f € VW, We define the t-valency val’ (f) of f in X to be the number of edges e € £
containing f. A k-hypergraph X is called t-subset-regular if the t-valency of f in
X is independent of the choice of f € V® and hence is called the t-valency of X
without ambiguity. A k-hypergraph is regular if it is 1-subset-regular. A k-hyper-
graph is called t-fold-transitive, or t-transitive, if Aut(X) acts transitively on the set
of ordered t-tuples of pairwise distinct vertices of X. Clearly, every t-transitive k-hy-
pergraph is t-subset-regular. A k-hypergraph X is called vertez transitive (or simple
transitive) if it is 1-fold-transitive, and it is called doubly transitive if it is 2-fold-
transitive. Note that for graphs (2-hypergraphs), the properties of ¢-subset-regularity
and t-fold-transitivity are undefined unless ¢ < 2. Doubly transitive or 2-subset-
regular graphs must be complete or edgeless, and so for graphs these properties are
only interesting when ¢ = 1, in which case these concepts correspond to the well
studied properties of regularity and vertex transitivity in graphs.

There is a connection between t-subset-regular hypergraphs and designs. Hence
results from design theory are applicable to these hypergraphs and vice versa. For
t <k<mn,at-(n,k,\) designis a pair (V, B) in which V is a set of cardinality n and B
is a collection of k-subsets of the point set V' such that every t-subset of V' is contained
in exactly A elements of B. Hence a t-subset-regular k-hypergraph X of order n is a
t-(n, k, \) design in which A is equal to the t-valency of X. A large set of t-(n, k, \)

designs of size N, denoted by LS[N](t, k,n), is a partition of the complete design
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(V,V®)) into N disjoint ¢-(n, k, A) designs, where A = (}7}) /N. If a t-subset regular
k-hypergraph X of order n is self-complementary, then X and its complement X¢ are
both ¢-(n, k, A) designs with A = (}7}) /2. Hence the pair {X, X} is a LS[2](t, k, n)
in which the t-designs are isomorphic. If X is t-fold-transitive, then the corresponding
t-design is also t-fold-transitive. Hence vertex transitive self-complementary k-hyper-
graphs of order n correspond bijectively to large sets of t-designs LS|[2|(t, k,n) with
t > 1 in which the ¢-designs are point-transitive and isomorphic.

In this thesis, however, we will use terminology from hypergraph theory, rather
than design theory.

Let p" be the highest power of a prime p dividing the order of a finite group G. A
Sylow p-subgroup of G is a subgroup of G of order p". We will make use of the following
notation for permutation groups. For a finite set {2, a point v in €2, a permutation 7
on , a permutation group G on 2, and a prime p, the symbols v7,v%, 771G, and
Syl,(G) will denote the image of v by 7, the orbit of G containing v, the conjugate of
G by 7, and the set of all Sylow p-subgroups of GG, respectively. The stabilizer of the
point v in the group G is denoted by G, and defined by G, = {7 € G : v = v}. For
a subset A C Q, the set-stabilizer of the set A in GG is denoted by G and defined by
Ga={re€G: A" = A}, where A7 = {v” : v € A}. It is not difficult to show that
the stabilizer GG, and the set-stabilizer Ga are each subgroups of GG. For finite sets €2
and II, a permutation « of €2, and a permutation (3 of II, the permutation o x 3 of

Q) x II is defined by
(u,v)*? = (u™, %), for all (u,v) € Q x IL.

For groups G < Sym(f2) and H < Sym(II), the symbol G x H denotes the set of
permutations {ax 3 : a € G, € H}. One can easily verify that G x H is a subgroup
of Sym(§2 x II).

For positive integers m and n, let np, denote the unique integer in {0, 1,...,m—

1} such that n = npy,(mod m). Thus np, is the remainder upon division of n by
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m. Let [%] denote the quotient upon division of n by m. Finally, for any prime

number p, let n(, denote the largest integer i such that p’ divides n. We will denote
the binary representation of an integer k by a vector b = (b, by—1,...,b1,b0)2. This
is, the entries of the vector b satisfy k = > ", 02", b, = 1, and b; € {0,1} for
all © € {0,1,...,m}. The support of the binary representation b is the set {i €
{0,1,2,...,m} : b; = 1}, and is denoted by supp(b).

1.2 History and layout of part I

Much of the research to date into self-complementary uniform hypergraphs has been
focused on determining necessary and sufficient conditions on the order of these struc-
tures. In the early 1960s, Sachs [29] and Ringel [28] determined necessary and suffi-
cient conditions on the order n of a self-complementary graph (2-hypergraph). They
used a simple counting argument to show that n must be congruent to 0 or 1 modulo
4, and then they characterized the lengths of the cycles in the disjoint cycle decom-
position of any graph antimorphism, giving an algorithm for generating all self-com-
plementary graphs of a given order n. In particular, they showed that there exists a
self-complementary graph of every admissible order n = 0, 1(mod 4). In 1978, M.J.
Colbourn and C.J. Colbourn [7] showed that one of the most important problems
in graph theory, the graph isomorphism problem, is polynomially equivalent to the
problem of determining whether two self-complementary graphs are isomorphic. Since
then, there has been a great deal of research into self-complementary graphs. A good
reference on self-complementary graphs and their generalizations was written by A.
Farrugia [10].

In Part I of this thesis, we focus on the generalization of self-complementary
graphs to self-complementary k-uniform hypergraphs. Part I is divided into four

chapters.
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Generating hypergraphs

In Chapter 2, we present necessary and sufficient conditions on the order n of a self-
complementary k-uniform hypergraph, and we discuss a method for generating all of
these structures up to isomorphism, for feasible n.

In 1985, Suprunenko [30] generalized the method by Ringel and Sachs for generat-
ing all self-complementary graphs to find a method for generating all self-complemen-
tary 3-hypergraphs. His characterization of the cycle type of an antimorphism of a
3-hypergraph was also found independently by Kocay [19] in 1992. In 2005, Szymariski
took this method one step further to characterize the cycle type of an antimorphism
of a 4-hypergraph, and gave an algorithm to generate all self-complementary 4-hyper-
graphs of a given order n. In 2007, Wojda gave a general characterization of the cycle
type of an antimorphism of a k-hypergraph. Wojda’s characterization is stated in
Theorem 2.2.4. However, given a permutation in Sym(n), it is difficult to determine
whether Wojda’s condition holds. In Theorem 2.2.5, we give a more transparent char-
acterization of the cycle type of a k-complementing permutation in Sym(n) which
has order equal to a power of 2. This yields a test to determine whether or not a
finite permutation is a k-complementing permutation (see Corollary 2.2.7 and Algo-
rithm 2.4.4), and an algorithm for generating all self-complementary k-hypergraphs
of order n, up to isomorphism, for all feasible n and k (see Algorithm 2.4.3). This ex-
tends the previous results for the cases k = 2, 3,4 due to Ringel, Sachs, Suprunenko,
Kocay and Szymanski.

In 2007, Szymanski and Wojda proved that for positive integers n and k with
k < n, a self-complementary k-uniform hypergraph of order n exists if and only if
(Z) is even. Our characterization of the cycle type of a k-complementing permutation
in Sym(n) gives an alternative description of this necessary and sufficient condition
on the order of a self-complementary k-uniform hypergraph in terms of the binary

representation of k (see Corollary 2.3.2). This yields more transparent conditions on
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order in the case where & is a sum of consecutive powers of 2 (see Corollary 2.3.4).

Regular hypergraphs

In Chapter 3, we examine the orders of t-subset-regular self-complementary k-uniform
hypergraphs.

In 1975, Hartman showed that a necessary condition for the existence of a
LS[2|(t,k,n) is that (Z:Z) is even for all i € {0,1,...,t}, and conjectured that these
necessary conditions are also sufficient. In 2003, Khosrovshahi and Tayfeh-Rezaie[17]
gave a useful and equivalent description of these necessary conditions as a set of con-
gruence relations. This gives necessary conditions on the order of a t-subset-regular
self-complementary k-hypergraph.

In 1998, Ajoodani-Namini proved that Hartman’s conjecture was true for ¢t = 1, 2.
However, this does not prove that there exist 1- and 2-subset-regular self-complemen-
tary k-hypergraphs for every n satisfying Hartman’s necessary conditions, since there
is no guarantee that the t-designs in a LS[2|(¢, k,n) are isomorphic. In 1985, Rao [27]
constructed regular self-complementary graphs (2-hypergraphs) of every admissible
order n (that is, n = 1 (mod 4)). In 2007, Poto¢nik and Sajna [23] found con-
structions for 1-subset-regular self-complementary 3-hypergraphs of every admissible
order n (that is, n = 1,2 (mod 4)). In 2008, Knor and Poto¢nik [18] constructed
2-subset-regular self-complementary 3-hypergraphs of every admissible order n (that
is, n = 2 (mod 4)). Hence Hartman’s necessary conditions are sufficient in the cases
where k € {2,3}. We will state these previous results in Chapter 3.

In Theorem 2.3.5, we reformulate Khosrovshahi and Tayfeh-Rezaie’s necessary
conditions on the order of a t-subset-regular self-complementary k-hypergraph in
terms of the binary representation of k. This yields more transparent necessary
conditions on the order of these structures in the case where the rank £ is a sum of

consecutive powers of 2. In addition, we prove that Khosrovshahi and Tayfeh-Rezaie’s
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necessary conditions are in fact sufficient for all £ in the case t = 1. This yields the
main result of this section, Theorem 3.2.6, which states that a 1-subset-regular self-
complementary k-hypergraph of order n exists if and only if 1 < ny, < kjge) for some
integer a such that max{i : 2’ | k} < a < min{i : 2 > k}. We conclude the chapter

with some open problems, and we discuss their connection to design theory.

Transitive hypergraphs

In Chapter 4, we examine the orders of ¢-fold transitive self-complementary k-uniform
hypergraphs.

In 1985, Rao [27] constructed vertex transitive self-complementary graphs of all
orders n for which the highest power p" of any prime p dividing n satisfies p” = 1 ( mod
4), and conjectured that these sufficient conditions on the order of a transitive self-
complementary graph may also be necessary. In 1997, Li [20] proved Rao’s conjecture
was correct in the case when n is a product of distinct primes. In 1999, Muzychuk [21]
gave a group-theoretic proof of Rao’s conjecture for all n. Hence a vertex transitive
self-complementary graph of order n exists if and only if the highest power p" of
any prime p dividing n is congruent to 1 modulo 4. In 2007, Potoénik and Sajna[24]
generalized Muzychuk’s result and showed that, if k = 2¢ or k = 2°4-1 and there exists
a vertex transitive k-hypergraph of order n = 1 (mod 21), then the highest power
p" of any prime p dividing n must be congruent to 1 modulo 2!, In Section 4.1.1,
we state the results to date regarding necessary conditions on the order of vertex
transitive self-complementary uniform hypergraphs. In Section 4.1.2, Theorem 4.1.3,
we extend Potocnik and Sajna’s result inductively to give necessary conditions on
the order of a t-fold transitive k-hypergraph of order n = t (mod 2+1), for all ¢t €
{1,2,...,k—1}.

Potoc¢nik and Sajna also gave constructions of vertex transitive self-complemen-

tary 3-hypergraphs, and showed that if £ = 3, their necessary condition is also suffi-
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cient, consequently generalizing Rao and Muzychuk’s result to 3-hypergraphs of odd
order. They also constructed many other vertex transitive self-complementary k-hy-
pergraphs, and obtained more sufficient conditions on the order of these structures.
We state these sufficient conditions in Section 4.2.1. In Section 4.2.2, we present Con-
struction 4.2.8 for vertex transitive self-complementary 2~ and (2° + 1)-hypergraphs
of any order n satisfying Poto¢nik and Sajna’s necessary conditions, and consequently
we prove that their necessary conditions are sufficient for these ranks. This yields
Theorem 4.2.10, the main result of this chapter. We close Chapter 4 with some open

problems.

Transitive hypergraphs of prime order

In Chapter 5, we use a characterization of the transitive groups of prime degree due
to Burnside [35] and Zassenhaus [38] to determine the group of automorphisms and
antimorphisms of the vertex transitive self-complementary k-hypergraphs of prime
order p = 1 (mod 2*1) in the case where k = 2¢ or k = 2° + 1. We use this
information to generate all such hypergraphs in Algorithm 5.3.1. As a consequence,
we obtain a bound on the number of pair-wise non-isomorphic vertex transitive self-
complementary graphs of prime order p = 1 (mod 4) (see Corollary 5.3.4). We

conclude Chapter 5 with some open problems.



Chapter 2

Generating self-complementary

hypergraphs

In Section 2.1, we discuss a method for generating self-complementary k-hypergraphs
of order n given a k-complementing permutation in Sym(n), which yields a simple
characterization of k-complementing permutations and a method for generating all of
the self-complementary k-hypergraphs having a given antimorphism 6.

In Section 2.2 we present some results due to Ringel, Sachs, Suprunenko, Kocay,
and Szymanski regarding the cycle type of an antimorphism of a self-complementary
k-hypergraph for k£ = 2,3,4. We also present a general characterization of the cycle
type of a k-complementing permutation in Sym(n) due to Wojda. Then we present a
new result, Theorem 2.2.5, which characterizes the cycle type of a k-complementing
permutation whose order is a power of 2, for any positive integer k. This yields a test
to determine whether or not a finite permutation is a k-complementing permutation.
It also yields an algorithm for generating all of the self-complementary k-hypergraphs
of order n, up to isomorphism, which will be presented in Section 2.4.

In Section 2.3, we state Szymanski and Wojda’s necessary and sufficient condition

on the order n of a self-complementary k-hypergraph, namely that (Z) is even. Then

10
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we use Theorem 2.2.5 to obtain an alternative description of this condition in terms
of the binary representation of k (see Corollary 2.3.2). This yields more transparent
conditions on the order of a self-complementary k-hypergraph when the rank £ is a

sum of consecutive powers of 2.

2.1 Complementing permutations

In this section, we obtain a simple characterization of the permutations in Sym(n)
which are antimorphisms of self-complementary k-hypergraphs, and we present an
algorithm which generates all of the self-complementary k-hypergraphs that have a
given antimorphism 6 € Sym(n).

In some of the literature ([19], [31] and [39]), a permutation which is an an-
timorphism of a self-complementary k-hypergraph is called a k-complementing per-
mutation. In [31] and [39], Szymariski and Zwonek demonstrate a close correspon-
dence between the class of all self-complementary k-hypergraphs of order n and the
set of k-complementing permutations on {1,2,...,n}. Let 6 be any permutation on
V ={1,2,...,n}. Then one may try to construct a self-complementary k-hypergraph
X induced by 6 as follows: Take any A; € V*) and define X to be the k-hypergraph
in which

AV € B(X) <= jis even (2.1.1)

Now take Ay € V) \A§€>, and define more elements of X as in (2.1.1), but this time
with A; replaced by A,. Proceed in this way until we have exhausted all elements of
V) This procedure leads to a well-defined self-complementary hypergraph if and
only if

AY £ Afor all A e V® and for all j odd. (2.1.2)

Note that condition (2.1.2) holds if an only if the sequence

A, AP AP A%
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has even length. We obtain the following result.

Proposition 2.1.1 [36] Let V be a finite set, let k be a positive integer such that
k <|V|, and let 0 € Sym(V'). Then the following three statements are equivalent:

1. 0 is a k-complementing permutation.
2. AY £ A for all Ae V® and for all j odd.
3. The sequence A, A, A% AP ... has even length for all A€ V®.

The method described above yields the following algorithm, which takes a k-com-
plementing permutation in Sym(V') as input, and returns the set Hy of all self-com-
plementary k-hypergraphs X on V' that have 6 as an antimorphism. This algorithm
was previously described by Sachs [29] and Ringel [28] for k = 2, by Suprunenko [30]
for k = 2,3, and by Szymanski [31] for k& = 3,4.

Algorithm 2.1.2 [29],[28], [30],[31]
Let V' be a finite set, let k be a positive integer such that k£ < [V, and let 6 be a

k-complementing permutation in Sym/(V).
(1) Set Hy := 0.

(a) In steps (a)(i) and (a)(ii) we will find each orbit of § on V*) and colour each

element of V*) either red or blue.

(i) Take an arbitrary uncoloured element A € V*) and create a sequence

A, A% AP AP

Y Y

This sequence is an orbit of § on V*)_ and its length is a divisor of |6].
Colour the edges of the form A?”' red and those of the form A" blue.
Since 6 is a k-complementing permutation, Proposition 2.1.1 guarantees

that there are no edges of V*) coloured both red and blue.
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(ii) Repeat step (a)(i) for any uncoloured edges of V) until all edges have

been coloured.

(b) Let m be the number of orbits of § on V*) constructed in step (a), and choose

an ordering Oy, O, ..., O, of these orbits. Set W = ZI".

(i) Choose a vector w € W.
Let X (6,w) be the k-hypergraph with vertex set V and edge set E,
where an edge e € O; is in E if and only if e is red and w; = 1, or e
is blue and w; = 0. Then X (0, w) is a self-complementary k-uniform
hypergraph.
Set Hg := Ho U{X(0,w)}. Set W := W\ {w,1 —w}.

(i) Repeat step (b)(i) until W = (.

(2) Return Hy.

Note that X (6, w) is isomorphic to its complement X (6,1 — w), where 1 is the
vector in Z5' with every entry equal to 1. Thus, for each k-complementing permuta-
tion 6 in Sym(V'), Algorithm 2.1.2 will generate the set Hy of all self-complementary
k-hypergraphs on V for which # is an antimorphism, up to isomorphism. That is,
every self-complementary k-hypergraph on V' for which 6 is an antimorphism is iso-
morphic to one of the hypergraphs in Hy. The set Hy is called the 8-switching class of
self-complementary k-hypergraphs on V. Any two self-complementary k-hypergraphs
in this #-switching class are said to be 0-switching equivalent, and each self-comple-

mentary k-hypergraph in this 6-switching class is said to be induced by 6.

2.2 Cycle types of antimorphisms

In this section, we will characterize the cycle type of a k-complementing permutation
in Sym(n) whose order is equal to a power of 2. Whenever we refer to a cycle of a

permutation #, we mean a cycle in the disjoint cycle decomposition of 6.
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2.2.1 Previous results

The following is a well-known result regarding the cycle types of antimorphisms of
self-complementary graphs (2-hypergraphs). It was originally proved by Sachs [29]
and Ringel [28], but a proof can also be found in Suprunenko [30].

Lemma 2.2.1 [29, 28, 30] A permutation 0 is an antimorphism for a self-comple-

mentary graph if and only if one of the following hold:
(1) The length of every cycle of 0 is divisible by /.
(i) @ has exactly one fized point, and all other cycles have length divisible by 4.

Suprunenko [30] proved the following analogue to Lemma 2.2.1 for 3-hypergraphs.
This result was also proved later by Kocay in [19].

Lemma 2.2.2 [30, 19] A permutation 0 is an antimorphism of a self-complementary

3-hypergraph if and only if one of the following hold:
(i) Ewvery cycle of 6 has even length.
(i) @ has one or two fized points, and all other cycles have length divisible by 4.

Szymarnski [31] took this method a step further, and proved the following ana-
logue of Lemmas 2.2.1 and 2.2.2 for 4-hypergraphs.

Lemma 2.2.3 [31] A permutation 0 is an antimorphism for a self-complementary

4-hypergraph if and only if one of the following hold:
(1) The length of every cycle of 6 is divisible by 8.

(ii) @ has one, two or three fived points and all other cycles have length divisible by
8.

(iii) @ has one cycle of length 2, and all other cycles have length divisible by 8.
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(iv) @ has one fized point, 1 cycle of length 2, and all other cycles have length divisible
by 8.

(v) 0 has one cycle of length 3, all other cycles have length divisible by 8.

The next result is due to Wojda [36, 33], and it gives necessary and sufficient

conditions on the cardinality of the orbits of a k-complementing permutation.

Theorem 2.2.4 [36, 33| Let k and m be positive integers, let V be a finite set, and let
o € Sym(V') with orbits Oy, Oy, ...,Op. Let 2%(2s;+ 1) denote the cardinality of the
orbit O;, for i =1,2,...,m. The permutation o is a k-complementing permutation

if and only if, for every £ € {1,2,... k} and for every decomposition
k=Fk +ko+ -+ ks

of k, where k; = 2P1(2r; + 1) for nonnegative integers p; and r;, and for every subse-
quence of orbits

0i,0i,,...,0,,

such that k; <|0;,| for j =1,2,...,(, there is a subscript jo € {1,2,...,(} such that
Pjo < Qi -

Given a permutation, it is difficult to determine whether Wojda’s condition holds.
In Theorem 2.2.5 we give a more transparent characterization of the orbit lengths of
k-complementing permutations which have order equal to a power of 2, and Corol-
lary 2.2.7 and Algorithm 2.4.4 will show how we can use our characterization to test
whether a finite permutation is a k-complementing permutation. In Section 2.4, we
will use the characterization of Theorem 2.2.5 to obtain Algorithm 2.4.3 for generat-
ing all of the self-complementary k-hypergraphs of order n, up to isomorphism, for

feasible k£ and n.
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2.2.2 New results

Theorem 2.2.5 below gives a characterization of the cycle types of k-complement-
ing permutations which have order equal to a power of 2 in terms of the binary
representation of k. We will show that this is sufficient to characterize all of the
k-complementing permutations, and that it leads to an algorithm for generating all
of the self-complementary k-hypergraphs of order n for feasible n and k.

Recall the definition of the binary representation of k, and the notation supp(b)

and np, from page 5 of Section 1.1.

Theorem 2.2.5 LetV be a finite set, let k be a positive integer such that k < |V, and
let b = (b, bm—1,...,ba,b1,b0)2 be the binary representation of k. Let 6 € Sym(V)
be a permutation whose order is a power of 2. Given { € supp(b), let A, denote the
set of those points of V contained in cycles of 0 of length < 2¢, and let B, denote
the set of those points of V contained in cycles of 6 of length > 2°. Then 0 is a
k-complementing permutation if and only if, for some ¢ € supp(b), V = A, U By and
|Ag| < Kpgera).

Proof: (=) Suppose that 6 is a k-complementing permutation of order a power of
2. Then every cycle of 6 has length a power of 2. If § contained a cycle of length
2" for every i € supp(b), then there would be an invariant set of 6 of cardinality
ZiESupp(b) 2! = k, a contradiction. Hence, for some ¢ € supp(b), 6 does not contain a
cycle of length 2¢,

Let

L = {¢ € supp(b) : 6 does not contain a cycle of length 2}. (2.2.1)

Then V' = A,U By for all £ € L. It remains to show that [As| < kjge+1) for some £ € L.

Suppose to the contrary that |Ay| > Kei1) for all £ € L. Write |4, = Zf:(l) a;2¢,

where a; is the number of cycles of # of length 2¢. Note that kpgetay = Zf:o b;2!. Thus,
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by assumption, |A,| > Zf:o b;2" for all £ € L. Suppose L = {ly,ls,...,l;} where

O <y < oo < Uy,

e Claim A: Let x € {1,2,...,t}. If [A,| > 3207 6,2 for all j € {1,2,..., 2},
then 6]4, has an invariant set of size Zfio b;2".
Proof of Claim A: The proof is by induction on x. First we will need some
notation. For any nonnegative integer ¢, let a; denote the number of cycles of #
of length 2¢. Then certainly Zf’;ol a;2" = |Ag,|, for j =1,2,...,t. Also, for any
sequence of integers do, a1, ..., a1 such that 0 < a; < a; for 0 <7 < £; — 1,
the sum ng,l ;2" is the sum of the lengths of a collection of cycles of 6| Ag,»
and hence it is the size of an invariant set of 6| Ay Conversely, any invariant
set S of 4| Ay, corresponds to a collection of cycles of 6 Ay, whose lengths sum
to |S], and hence there exists a sequence of integers ag, ay, ..., a1 such that

0<a; <a;for0<i<t—1 and|S|=>17,"a;2".

Base Step: 1f x =1 and |Ay,| > Zflzo b;2", then

f1—1 Z1
[Ap | =) a2 > b2 (2.2.2)
i=0 =0

By the definition of L in (2.2.1), it follows that a; > b; for 0 < ¢ < ¢; — 1. Hence

(2.2.2) implies that
01

Z(ai — bz)QZ 2 2£1

i=0
holds with a; — b; > 0 for all i = 1,2,...,¢; — 1. Thus by Lemma A.0.14 (see

Appendix), there is a sequence cg, ¢y, ..., ¢ -1 such that 0 < ¢; < (a; — b;) for

0<:</¢ —1, and
-1

D 2t =20
=0

Now let a; = b; + ¢;. Then

0<a;=bi+c¢ <b+(a—b)=a
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and hence

for 0 <i</{; —1, and

l1—1 l1—1 {1—1 l1—1

l
Z 4;2" = Z b2 + Z ;2 = Z b2l + 20 = Z b;2".
i=0 i=0 i=0 i=0 i=0

. . . ¢ . .
Thus 0| A,, has an invariant set of size > ilo 02", as required.

Induction Step:  Let 2 < x < ¢ and assume that if |A,| > ijObQi for
all j € {1,2,...,2 — 1}, then 0|4,  has an invariant set of size Ze“ ;20
Now suppose that |A,| > Zfio b;2¢ for all j € {1,2,...,2}. Then certainly
|Ag,| > 35,62 for all j € {1,2,...,2 — 1}, and so by the induction hypoth-

esis, 0|4,  has an invariant set of size Zfi_ol b;2!. This implies that there is a

sequence of integers cg, c1,...,¢cq, ,—1 such that 0 <¢; <a;for 0 <i <0, 1 —1,
and
gx—lfl Zac—l
> 2t =) b2 (2.2.3)
i=0 i=0

Since | Az, | > 32t 0:27, we have

lyp—1

Z a;2' > Z b;2'. (2.2.4)

Since {1 € L, ag,_, =0, so (2.2.4) implies that

szl ei}fl 1 6171
A | =D a2 = > a2+ ) 2> Zb 2,
i=0 i=0 i=ly_1+1

Hence by (2.2.3), we have

61—1 1 éw—l

d (ai—e)2+ > a2 > Z b2,

=0 i=lr_1+1 =l _1+1
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This implies that

ézfl_l ET—l

(@i — )2+ > (a;—b;)2 > 2%, (2.2.5)

i=0 i=ly_1+1
By the definition of L in (2.2.1), we have a; — b; > 0 for £, 1 +1<i </, — 1.
Also, a; —¢; > 0 for 0 < i < ¢,y — 1. Thus (2.2.5) and Lemma A.0.14
with n = 2 (see Appendix) guarantee that there exists a sequence of integers
do,dy,...,dg,—q1 such that 0 < d; < a; — ¢; for all i € {0,1,...,0,1 — 1},
de, , =0,0<d; <a;—b; for all integers ¢ such that ¢, 1 +1<¢< /¢, —1, and

lp—1

> 2 =2 (2.2.6)
=0

Now define a sequence of integers ag, ay, . ..,as,_1 by

(

ci+dy, f0<i</l,_1—1
a; =40, ifi =40,

bi+d;, il +1<i<l,—1

\
Now for ¢ = 0,1,...,¢,_1 — 1, we have 0 < d; < a; — ¢1, and thus 0 < ¢; +
d; < ¢+ (a; —¢;) = a;. Hence 0 < a; < a; for these i. Moreover, for each
integer ¢ such that /,_1 +1 <17 </, — 1, we have 0 < d; < a; — b;, and thus

0<b+d; <b+ (a;—0b1) =a;. Hence 0 < a; < a; for these ¢ also. Since

ag, , =0, we conclude that 0 < a; <a; fort=0,1,...,¢, — 1. Moreover,
lr—1 lp—1—1 lp—1
Zaﬂ’ d (et+d)+0+ > (bi+dy)
1=0 i=lp—1+1
lbp—1—1 lr—1 lp—1
Zcz—i- Z b—i—Zd (since dy, , = 0)
i=ly_1+1
lo—1 lp—1

—Zb+ > b+Zd (by (2.2.3))

1= Em 1+1
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r—1

=) b2 +2% (by (2.2.6))
=0
gz

= Zbﬂi. (since by, = 1)
=0

. . . Ls . .
Thus 6|4, has an invariant set of size ) ;" b;2', as required.

Hence by mathematical induction, Claim A holds for all z € {1,2,...,t}.

Now applying Claim A with 2 = t, we observe that [A,| > Zf; 0 02" for all
j €11,2,...,t}. Hence 0|4, has an invariant set of size Zf;o b;2. But since ¢; is the
largest element of L, 6|5, (and hence ) contains a cycle of length 2° for all £ € supp(b)
with ¢, < ¢ < m, and hence 6 contains an invariant set of size Y ;" ;2" = k. This
contradicts the fact that € is a k-complementing permutation.

We conclude that for some j € {1,2,...,t}, |[Ay] < Zfio b;2¢. For this j, set

¢ ={;. Then £ € supp(b) and [A,| < Kpe+1, as required.

(<) Let 6 € Sym(V) with order a power of 2 and suppose that, for some ¢ € supp(b),
V = AU By and |Ay| < Kpe1). This implies that ¢ does not have an invariant set
of size k. Moreover, since the order of # is a power of 2, for each odd integer j, ¢’
has the same cycle type as 6, and hence 67 also has no invariant set of size k. Hence
AY +£ A for all odd integers j and all A € V¥ and so Proposition 2.1.1 implies that

0 is a k-complementing permutation. i

Theorem 2.2.5 together with the following lemma yields Corollary 2.2.7, which
gives a test to determine whether a given permutation in Sym(n) is a k-complement-

ing permutation.

Lemma 2.2.6 Let k be a positive integer.
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(1) Let s be a nonnegative integer. A permutation 0 is a k-complementing permuta-

925+1

tion if and only if 1s a k-complementing permutation.

(2) A self-complementary k-hypergraph has an antimorphism whose order is equal to

a power of 2.
Proof:

1. If 0 € Sym(V) is a k-complementing permutation, then § € Ant(X) for some
self-complementary k-hypergraph X = (V, E), and so 6 is a bijection from E to
E¢ and a bijection from E¢ to E. It follows that %! € Ant(X).

Conversely, suppose that 02! is a k-complementing permutation. Then Propo-
sition 2.1.1 guarantees that each orbit of 627! on V* has even cardinality.
Observe that each orbit of #2571 on V*) is contained in an orbit of # on V*).
Also, every k-subset in an orbit of # on V) must certainly lie in an orbit of
621 on V¥ Since the orbits of 2t on V*) are pairwise disjoint, it follows
that every orbit of § on V¥ is a union of pairwise disjoint orbits of #2*1 on
V*) each of which has even cardinality. Hence every orbit of # on V*) has
even cardinality, and so Proposition 2.1.1 implies that 6 is a k-complementing

permutation.

2. Let X be a self-complementary k-hypergraph, and let § € Ant(X). Proposi-
tion 2.1.1 guarantees that 6 has even order, so || = 2*s for some positive integer
z and some odd integer s. Since s is odd, part (1) implies that §° € Ant(X),

and #° has order equal to a power of 2.

Thus Lemma 2.2.6(1) and Theorem 2.2.5 together yield the following character-

ization of k-complementing permutations.
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Corollary 2.2.7 Let k be a positive integer, let b be the binary representation of k,
and let V' be a finite set. A permutation o € Sym(V') is a k-complementing permu-
tation if and only if |o| = 2!(2t + 1) for some integers t and i such that i > 1 and
t >0, and 0 = o®*1 satisfies the conditions of Theorem 2.2.5 for some { € supp(b).1l

In Algorithm 2.4.4, we will use the conditions of Corollary 2.2.7 to derive a
straightforward method to test whether a given 6 € Sym(V) is a k-complementing
permutation.

The following corollary to Theorem 2.2.5 was first proved directly by Potocnik
and Sajna [24]. We will need to make use of this result in Chapter 5, in the proof of
Theorem 5.3.3.

Corollary 2.2.8 [24] Let ¢ be a positive integer, let k = 2° or k = 2° + 1, and let
n = 1(mod 27Y). Let X be a self-complementary k-hypergraph of order n. Let Oy
be the set of elements of Ant(X) whose orders are powers of 2. Then every element

of Oy has exactly one fived point and all other orbits have length divisible by 271,

Proof: Let § € Oy and let b be the binary representation of k. Then supp(b) C {0, ¢}.
Now the conditions of Theorem 2.2.5 must hold for # for some ¢ € supp(b). If these
conditions hold with ¢ = 0, then each cycle of 8 has length equal to 2" for » > 0. But
this implies that n == 0 (mod 2), contradicting the fact that n = 1 (mod 2!).
Hence the conditions of Theorem 2.2.5 must hold for ¢. Thus V = A, U B, and
|Ag| < kpery) = k < 2571 Since |By| = 0 (mod 27) and n = |V] = 1(mod 2°t1),
we must have |A] = 1. Thus 6 has exactly one fixed point and all other orbits have

length divisible by 2*1. |
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2.3 Necessary and sufficient conditions on order

In 2007, Szymariski and Wojda [32] solved the problem of the existence of a self-com-
plementary k-hypergraph of order n.

Theorem 2.3.1 [32] Let k and n be positive integer such that k < n. A self-com-

plementary k-uniform hypergraph of order n exists if and only if (Z) 1S even.

In this section, we give an alternative description of the condition that (Z) is
even in terms of the binary representation of k (see Corollary 2.3.2) which is more
easily verified. In particular, this yields more transparent conditions on the order of
a self-complementary k-hypergraph when the rank £ is a sum of consecutive powers
of 2.

Lemma 2.2.6(2) and Theorem 2.2.5 imply the following necessary and sufficient

conditions on the order of a self-complementary uniform hypergraph of rank k.

Corollary 2.3.2
Let k and n be positive integers, k < n, and let b be the binary representation of k.

There exists a self-complementary k-hypergraph of order n if and only if
Nppe+1] < Kpperay for some £ € supp(b). (2.3.1)

Proof: Suppose that there exists a self-complementary k-hypergraph X = (V) E).
Lemma 2.2.6(2) implies that there exists # € Ant(X) with order equal to a power
of 2. Thus Theorem 2.2.5 implies that we can partition V into disjoint sets A and
B such that A and B are unions of orbits of #, and there exists ¢ € supp(b) such
|A| < kgesr) and |B| = 0 (mod 2°71). Since n = [V| = |A| 4 |B], it follows that
npe+1] < Kpesry. Hence (2.3.1) holds.

Conversely, suppose that (2.3.1) holds for some ¢ € supp(b), say n = m2°+t + j
for some j < kjge+1). Let V be a set of order n, and let  be a permutation in Sym(V')

which has j fixed points and m cycles of length 2. Then 6 satisfies the conditions
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of Theorem 2.2.5 for ¢, and so 6 is a k-complementing permutation. Thus there exists
a self-complementary k-hypergraph of order n in the #-switching class of self-comple-

mentary hypergraphs on V. i

In Appendix A, Lemma A.0.13, we show directly that condition (2.3.1) is equiv-
alent to Szymanski and Wojda’s condition that (Z) is even.

When k = 2° or k = 2° 4 1, Corollary 2.3.2 yields the following result.
Corollary 2.3.3 Let ¢ be a positive integer.

1. If k = 2%, then there exists a self-complementary k-hypergraph of order n if and

only if npeny < k.

2. If k = 2° + 1, then there exists a self-complementary k-hypergraph of order n if

and only if n is even or nper) < k.

For example, there exists a self-complementary graph of order n if and only if
n=0or 1 (mod 4), and there exists a self-complementary 3-hypergraph of order n if
and only if n = 0,1 or 2 (mod 4). In the case where k is a sum of consecutive powers
of 2, the condition of Corollary 2.3.2 holds for the largest integer in the support of

the binary representation of k, as the next result shows.

Corollary 2.3.4 Letr and ¢ be nonnegative integers, and suppose thatk =%, 20+,

Then there exists a self-complementary k-hypergraph of order n if and only if npetri1y <

k.
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Proof: Suppose that there exists a self-complementary k-hypergraph of order n, and

let b be the binary representation of k. Then
supp(b) ={(, ¢+ 1,...,0+r},
and so Corollary 2.3.2 guarantees that
Npgesit) < Kpgeris) (2.3.2)
for some j € {0,1,2,...,7}. If (2.3.2) holds for some j < r, then the fact that
Npge+G++1) < PAAEARINE Nyge+i+l]

implies that
e+ < 27+ ke, (2.3.3)
NOW since 2€+j+1 + k[2£+j+1] = 22+j+1 + Zzzo 2€+i = k[22+(j+1)+1], inequality (233)
implies that
TL[22+(]’+1)+1] < k[2e+(]‘+1)+1],
and hence (2.3.2) also holds for j + 1. Thus, by induction on j, the fact that (2.3.2)
holds for some j € {0, 1,...,r} implies that (2.3.2) holds for j = r. Hence njeri1) <
]{3[22+r+1] = k.
Conversely, Corollary 2.3.2 guarantees that there exists a self-complementary k-

hypergraph of order n for every integer n such that npeiri1y < kpetri1) = k. i

Corollary 2.3.5 Let ¢ be a positive integer and suppose that k = 2¢ — 1.
(1) There exists a self-complementary k-hypergraph of order n if and only if njpy < k.

(2) If n = 2" — 1 for some integer r > {, there does not exist a self-complementary

k-hypergraph of order n.
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Proof: Since k = 2! — 1 = Zf;é 2, (1) follows directly from Corollary 2.3.4. If
n = 2" —1for r > {, then npy = 2 —1 =k, and so (1) implies that there does not

exist a self-complementary k-hypergraph of order n. Hence (2) holds. i

Corollary 2.3.6 If n = 2" — 2 for an integer r > 2, then there exists a self-comple-

mentary k-hypergraph of order n if and only if k < n and k is odd.

Proof: Let b denote the binary representation of k. If k is odd, then 0 € supp(b).
Since n is even, Corollary 2.3.2 implies that there exists a self-complementary k-hy-
pergraph of order n.

Conversely, suppose that k is even and & < n. Then since k < n, max{{ : { €
supp(b)} < r, and so npy = 2¢ — 2 for all £ € supp(b). Since k is even, 2 — 2 > kpe,
and 80 iy > Kpgy for all £ € supp(b). Thus Corollary 2.3.2 implies that there does

not exist a self-complementary k-hypergraph of order n. i

2.4 Generating self-complementary hypergraphs

In this section we present Algorithm 2.4.3, which generates all self-complementary
k-hypergraphs of order n, up to isomorphism, and Algorithm 2.4.4, which determines
whether a given permutation in Sym(n) is a k-complementing permutation. Before we
present these algorithms, we will need some terminology and a couple of preliminary
algorithms and results.

If & € Sym(n) is the product of disjoint cycles of lengths ny,ng,...,n, with
ny < ng < --- < n, (including 1-cycles), then the r-tuple (nq,no,...,n,) is called the
cycle type of 0. An integer partition of a positive integer n is a list of positive integers

(n1,n2,...,n,) such that ny < nyg < --- < n,, and > ;_,n; = n. It is well known



2.4. Generating self-complementary hypergraphs 27

that two permutations in Sym(n) are conjugate if and only if they have the same
cycle type. Hence there is a natural correspondence between the conjugacy classes of
Sym(n), the cycle types of Sym(n), and the integer partitions of n.
Given an integer partition p = (nq,ng,...,n,) of n, let (p,n) denote the per-
mutation in Sym(n) with cycle type p, whose i-th cycle has the j-th entry equal to
i;(l)ni +j, for all i € {1,2,...,r} and all j € {1,2,...,n;}, where ny = 0. For
example, for the partition p = (2,3,3) of n = 8, we have 0(p,n) = (12)(345)(6 7 8).
Recall that for each k-complementing permutation 6 in Sym(V'), Algorithm 2.1.2
will generate the set Hy of all self-complementary k-hypergraphs on V' for which
0 is an antimorphism, up to isomorphism. Lemma 2.2.6(2) guarantees that every
self-complementary k-hypergraph has an antimorphism which has order a power of
2, and so we can generate all of the self-complementary k-hypergraphs of order n,
up to isomorphism, by applying Algorithm 2.1.2 to each permutation in Sym(n)
satisfying the conditions of Theorem 2.2.5. However, Lemma 2.4.1 below shows that
we need only apply Algorithm 2.1.2 to a set of conjugacy class representatives of such

permutations.

Lemma 2.4.1 Two permutations 0 and o are conjugate in Sym(V') if and only if

each hypergraph in Hy is isomorphic to a hypergraph in H,.

Proof: Observe that if 6 is an antimorphism of a k-hypergraph X = (V| F), and
o = 77107 is conjugate to 6, then o is an antimorphism of X™ = (V, E™). Hence each
hypergraph X in Hy is isomorphic to a hypergraph X7 in H,. Conversely, if X and Y
are isomorphic self-complementary k-hypergraphs, say X™ =Y, then if § € Ant(X)
it follows that 77107 € Ant(Y), and so any two isomorphic self-complementary k-

hypergraphs have antimorphisms from the same conjugacy class. i

Lemma 2.4.1 implies that in order to generate all of the self-complementary k-
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hypergraphs of order n up to isomorphism, it suffices to apply Algorithm 2.1.2 to
one permutation from each conjugacy class of permutations in Sym(n) satisfying the
conditions of Theorem 2.2.5. We will do this in Algorithm 2.4.3. First, we will need
some notation and a preliminary algorithm.

For a positive integer n, let Py(n) denote the set of integer partitions of n into
powers of 2. Note that a complete set of representatives of the conjugacy classes of
permutations in Sym(n) satisfying the conditions of Theorem 2.2.5 corresponds to
a subset of Py(n), and so we will make use of the set Py(n) in Algorithm 2.4.3. In
[15], Riha and James present an efficient algorithm for generating the set of integer
partitions of n with a fixed number m of parts from a given set S. This algorithm
can be applied with m parts from S = {2 : 2° < n}, for each m = 1,2,...,n, to
construct the set Py(n).

In Algorithm 2.4.2, we will describe an alternative method for generating the set
P2(n) for any positive integer n. For a positive integer r and two vectors w,v € Z",
we write w < v if w is less than or equal to v with respect to the lexicographic, or
dictionary, ordering. We will use sort(v) to denote the vector obtained from v by
sorting its coordinates in non-decreasing order, and concatenate(v,w) to denote the
vector (vy,va, ..., Up, Wy, W, ..., w,) € Z* obtained by concatenating the vectors v
and w. Note that sort(v) can be obtained from v using any of the well-known sorting

algorithms, such as the Quicksort algorithm developed by Hoare in [13].

Algorithm 2.4.2 Let n be a positive integer and let ¢ be the binary representation
of n. Let supp(c) = {l1,0a,..., 0}, where {1 < ly < --- < {,.

(1) Using steps (A) and (B) below recursively, construct the sets Py(2%) recursively
fOI'Z':O,l,...,gt.

(A) Set Py(2°) := {(1)}. Set i := 1.

(B) Repeat steps (I)-(III) below while i < ;.
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(I) Set P := Py(2i71) x Py(2071). Set Po(27) := {(2%)}.
Repeat steps (a)-(b) below while P # 0.
(a) Choose (p,q) € P. If p < g, then
set Py(2) := Py(2%) U {sort(concatenate(p, q))}.
(b) Set P :=P\ {(p,q)}. Return to step (a).
(IT) Return Py(2).

(III) Set i :=1i+ 1. Return to step (I).
(2) Using steps (A),(B), and (C) below, construct the set Pa(n).

(A) Set P = 7)2(2£1) X P2(2£2) X e X 7)2<2£t). Set Pg(n) = (Z)
(B) Repeat steps (I)-(II) below while P # ().

(I) ChOOSQ (p17p27 v 7pt) S P
Set Pa(n) := Po(n) U {sort(concatenate(py,pa, ..., p))}

(IT) Set P := P\ {(p1,p2,---,pt)}. Return to step (I).

(C) Return Py(n).

Lemma A.0.14 guarantees that every element in Py(2%) (except for (27) itself)
is the concatenation of two elements in Py(2°"1). Hence steps (1)(A)-(1)(B) of Al-
gorithm 2.4.2 generate all of Py(2%), for i = 1,2,...,4;. Also, the uniqueness of the
binary representation of n and Lemma A.0.14 together guarantee that every element
if Py(n) is the concatenation of the coordinates of an element in Py(2%) x Py(22) x
... X P»(2%). Hence steps (2)(A)-(2)(C) of Algorithm 2.4.2 generate all of Py(n).

We are ready to state Algorithm 2.4.3, which generates all self-complementary k-
hypergraphs of order n, up to isomorphism, without prior input of a k-complementing

permutation in Sym(n).
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Algorithm 2.4.3 Let n and k be positive integers, & < n. Let b be the binary

representation of k, and let
L= {l € supp(b) : nppe+1y < Kppeay}
(1) Set H:=0. If £L=10, go to step (4). Otherwise, go to step (2).

(2) Construct the set Py(n) using Algorithm 2.4.2.
Set P := Py(n).
Using steps (A) and (B) below, construct a set S of representatives of the con-
jugacy classes of permutations in Sym(n) which satisfy the conditions of Theo-

rem 2.2.5 for some ¢ € supp(b).

(A) Set S := (. Repeat steps (a)-(b) below while P # ().

(a) Choose p = (ny,ng,...,n,) € P and set
Ly={teLlL:n;#2 for 1 <i<r}.

Repeat step (i) below while L, # 0.
(i) Choose £ € L,. Let ng = 0, and let s be the largest integer such
that n; < 2¢ for all i < s.
I3 ons < S0 b2, set S:= SU{f(p,n)} and set L, = 0.
Otherwise, set L, := L, \ {¢}.
(b) Set P :=P\ {p}. Return to step (a).

(B) Return S.
(3) Repeat step (A) below while S # 0.

(A) Choose 6 € S and apply Algorithm 2.1.2 to construct H,.
Set ‘H := H U Hy.
Set S := S5\ {6}.
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(4) Return H.

The following algorithm determines whether or not a permutation 6 € Sym(V)

is a k-complementing permutation.

Algorithm 2.4.4 Let k be a positive integer, let b be the binary representation of
k, and let V be a finite set.

Input: 6 € Sym(V)

YES, if 0 is a k-complementing permutation
Output :
NO, otherwise

1. If |0] is odd, output NO and quit.
Otherwise, go to step (2).

2. Write |0| = 2(2t 4 1) for some positive integer 1.
Let 6 = 6% and let p = (ny,ns, ..., n,) be the cycle type of 6. Set

L, :={t € supp(b) : n; # 2" for all i € {1,2,...,7}}.

If L, = 0, output NO and quit.
Otherwise, go to step (3).

3. Choose { € L,,.
Let ny = 0, and let s be the largest integer such that n;, < 2¢ for all i < s. If
Yoioni < Zfzo b;2¢, output YES and quit.

Otherwise, go to step (4).

4. Set L, := L, \ {¢}. If L, =0, output NO and quit.
Otherwise, return to step (3).

The method of Algorithm 2.4.4 for testing whether 6 is a k-complementing per-
mutation relies on the characterization of k-complementing permutations given in

Corollary 2.2.7, which is an alternative to Wojda’s characterization in Theorem 2.2.4.



Chapter 3

Regular self-complementary

hypergraphs

In this chapter, we examine the orders of t-subset-regular self-complementary k-

uniform hypergraphs.

3.1 Necessary conditions on order

We find necessary conditions on the order of a t-subset-regular self-complementary
k-hypergraph in terms of the binary representation of the rank k. In Section 3.1.1 we
will present the results to date, and in Section 3.1.2 we will reformulate the previously
obtained necessary conditions on the order of these structures in terms of the binary

representation of the rank k.

3.1.1 Previous results

We state the known necessary conditions on the order of t-subset-regular self-com-
plementary k-hypergraphs.
Clearly, if a self-complementary k-hypergraph X = (V| E) of order |V | = n exists,

32
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then {X, X} is a partition of V*) into two sets of equal size [V(*®[/2 = (})/2, and
consequently (Z) must be even. If X is also t-subset-regular, we obtain additional
necessary conditions, which are given in Theorem 3.1.1. This result was first stated
by Hartman [12] in the language of large sets of ¢-designs. The proof is included here

for the sake of completeness.

Theorem 3.1.1 [12] Suppose X is a t-subset-reqular self-complementary k-hyper-
graph of order n, where 0 <t < k <n. Then
(Z - z) =0 (mod 2) for0<i<t. (3.1.1)
Proof: Let T be any t-subset of V = V(X). Clearly T is contained in exactly (7))
sets in V®) . Since X is self-complementary, the t-valency of X is equal to the t-
valency of X¢, and these t-valencies must sum to (Z:i) Hence the t-valency of X is
(k=)/2
Now let i € {0,1,...,t}, and let I be any i-subset of V. We will count the

number of edges of X containing /. We know that the i-subset [ is contained in

exactly (;L__;) t-subsets of V', and each ¢-subset of V' is contained in exactly (Z:;) /2

k—

t_ii) t-subsets which contain the i-subset

edges of X. Since each edge of X contains (
1, it follows that I lies in exactly

(e300

edges of X, which is independent of the choice of I. Hence X is i-subset-regular, with

1-valency (Z_) /2. Since this number must be an integer, and 7 was chosen arbitrarily,

%
—1

we conclude that the (3.1.1) holds. |

The proof of Theorem 3.1.1 actually shows that a t-subset-regular self-comple-

mentary hypergraph is necessarily i-subset-regular, for all positive integers i < t.
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The necessary conditions (3.1.1) of Theorem 3.1.1 are stated alternatively in
Theorem 3.1.2. The equivalence of these two statements was proved by Khosrovshahi

and Tayfeh-Rezaie [17], also in the language of large sets of ¢-designs.

Theorem 3.1.2 [17] Let t,k and n be positive integers such that t < k < n. If there
exists a t-subset-reqular self-complementary k-hypergraph of order n, then there exists

a positive integer a such that max{i : 2' | k} < a <min{i : 2° > k} and

N[2a) € {t,t—f—l,...,/{?[ga] — 1} (3.1.2)

3.1.2 New results

In this section, we will reformulate the known necessary conditions on the order of a t-
subset-regular self-complementary k-hypergraph in terms of the binary representation
of the rank k. This yields more transparent conditions on the order n in the case
where k is a sum of consecutive powers of 2.

In Theorem 3.1.4, we refine the result of Theorem 3.1.2 slightly to show that
(3.1.2) holds for an integer a such that a — 1 lies in the support of the binary rep-
resentation of k. It should be noted that Potocnik and Sajna first observed this
refinement in the case where the rank k has the form & = 2¢ or k = 2° + 1 [24].

First we need a preliminary lemma.

Lemma 3.1.3 Let t,k and n be positive integers such thatt < k < n. Let b be the
binary representation of k. There exists a positive integer a such that max{i : 2" |

k} <a<min{i: 2" >k} and
Nga] € {t,t—i—l,...,k[ga} — 1} (313)
if and only if there exists £ € supp(b) such that (3.1.83) holds with a = £ + 1.

Proof: (<) If ¢ € supp(b) then max{i : 2" | k} < £+ 1 < min{i : 2' > k}. Hence if
(3.1.3) holds with a = ¢ + 1 for some ¢ € supp(b), then certainly (3.1.3) holds for an
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integer a in the range max{i : 2" | k} < £+ 1 < min{i : 2° > k}.

(=) Suppose that there exists an integer a such that max{i : 2' | k} < a < min{s :
2" > k} and (3.1.3) holds. If a — 1 € supp(b), then set £ = a — 1 and we are done.
Hence we may assume that a — 1 & supp(b).

Now if i & supp(b) for all 4 such that 0 < i < a — 1, then ko = Z?;Ol b2t = 0,
and so as t > 1, (3.1.3) implies that njg.) € (), giving a contradiction. Hence we must

have supp(b) N {1,2,...,a — 1} # (). Set
¢ =max{i:ie€supp(b) N{1,2,...,a—1}}

and observe that £ < a — 1. Then kpo) = 07 020 = S0 5:2 = kigerr), and so
(3.1.3) implies that
N2a] € {t, t+1,..., k?[2£+1] — 1} (314)

Now (3.1.4) implies that npe < 21 Since £+ 1 < a, it follows that npey = nja,

and so (3.1.4) implies that
Njge+1) € {t, t+1,..., k[2£+1} — 1}

Since ¢ € supp(b), this completes the proof. i

Theorem 3.1.4 Let k be a positive integer and let b = (by, byp_1,...,b2,b1,bp)2 be
the binary representation of k. Let t be an integer such that 1 <t < k. If there exists

a t-subset-reqular self-complementary k-hypergraph, then
Noe+1] € {t, t+1,..., k[22+1] - 1} (315)
for some £ € supp(b).

Proof: If there exists a t-subset-regular self-complementary k-hypergraph, then by
Theorem 3.1.2, there exists a positive integer a such that (3.1.3) holds. Hence (3.1.5)
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follows from Lemma 3.1.3. |

Corollary 3.1.5 Let { be a positive integer, let k = 2° or k = 2° + 1, and let t be
an integer such that 1 <t < k. If there exists a t-subset-reqular self-complementary

k-hypergraph of order n, then nygevy € {t,t +1,... k —1}.

Proof: If there exists a t-subset-regular self-complementary k-hypergraph of or-
der n, then Theorem 3.1.4 implies that condition (3.1.5) holds for some /¢ in the
support of the binary representation b of k. Since t > 1, for { = 0 we have
{t.t+ 1, ke — 1} = (. Hence condition (3.1.5) must hold for some nonzero
element of supp(b). Since k € {2¢ 2¢ + 1}, the only nonzero element in supp(b) is /.
Hence (3.1.5) holds for ¢, and so npet1y € {t,t +1,..., kpetp — 1}, Since Kper) = &
for all k € {2, 2° + 1}, the result follows. |

In the case where k is a sum of consecutive powers of 2, if condition (3.1.5) of
Theorem 3.1.4 holds, then it holds for the largest integer in the support of the binary

representation of k, as the next corollary shows.

Corollary 3.1.6 Letr and ¢ be nonnegative integers, and suppose thatk =3 ._, 20+,
If there exists a t-subset-regular self-complementary k-hypergraph of order n, then

npesrry € {6t +1,.0 k= 1}

Proof: Let b denote the binary representation of k. Then
supp(b) = {(, 0+ 1,...,0+r},

and so Theorem 3.1.4 guarantees that

Nge+it1) € {t,t+1,..., k[2e+]’+1] -1} (3.1.6)
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for some j € {0,1,...,r}. Suppose that j < r. Since
Nge++1)+1) < of+i+l + Ngetity)

and
Nge+G+0+1) = Nae+i+1],
condition (3.1.6) implies that

t < n[2e+(j+1)+1] < 2£+j+1 + kf[25+]’+1]. (317)
Now since 27 + kppeqjiny = 2007H 4 ZLO 2 = Kjger+v+1), inequalities (3.1.7)
imply that

t < npgergrnmy < Kgergrnay,

and hence nperg++y € {4+ 1,. .., ke — 1} Thus for j < r, we have that

Nge+i+1] € {t, t+1,..., k[22+]’+1] — 1}
implies

n[24+(j+1)+1] € {f}, t+ 1, cey k‘[2€+(j+1)+1} — 1}.

It follows that
Nge+r+1] € {t, t+1,..., k[2[+r+1] - 1}.

Since kppetr+1) = k, this implies that
N[gt+r+1) < {t,t—i— 1, Ceey k — 1}

as claimed. |

Corollary 3.1.7 Let ¢ be a positive integer, let k = 2 — 1 and let t be a positive
integer such that t < k. If there exists a t-subset-reqular self-complementary k-hyper-

graph of order n, then nj € {t,t+1,....k—1}.
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Proof: Since k =2/ — 1 = Zf:é 2°, this result follows directly from Corollary 3.1.6.1

3.2 Sufficient conditions on order

In this section, we show that the necessary conditions on the order of a t-subset-
regular self-complementary k-hypergraph given in Theorem 3.1.2 are sufficient in

certain cases.

3.2.1 Previous results

The necessary conditions of Theorem 3.1.2 have been shown to be sufficient for all ¢
in the cases where k € {2,3}. Rao handled the case where k = 2 [27], Poto¢nik and
Sajna handled the case where & = 3 and ¢ = 1 [23], and Knor and Potoc¢nik handled
the case where k = 3 and ¢ = 2 [18]. Thus the condition of Theorem 3.1.2 is both

necessary and sufficient when k € {2, 3}, as the following result states.

Theorem 3.2.1 Let n be a positive integer.

(1) [27] There exists a regular self-complementary graph of order n if and only if n

15 congruent to 1 modulo 4.

(2) [23] There exists a 1-subset-reqular self-complementary 3-hypergraph of order n

if and only if n is congruent to 1 or 2 modulo 4.

(8) [18] There exists a 2-subset-reqular self-complementary 3-hypergraph of order n

if and only if n is congruent to 2 modulo 4.
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3.2.2 New results

In this section, we prove that a 1-subset-regular self-complementary k-hypergraph of
order n exists for every integer n satisfying the necessary conditions of Theorem 3.1.2.
First we will need some notation.

In this section, we will denote the vertex set and edge set of a self-complementary
k-hypergraph X by V(X) and £(X), respectively. Also, we will denote the valency
valk ({v}) defined on page 3 of Section 1.1 by valx(v). Let X = (V,&) be a k-
hypergraph and let § € Sym(V). Then X? denotes the hypergraph (V,&?), where
E'={E% . Ec&}and E’ = {1 : v € E}. For a subset P of the orbits of § on V&),
let U(P) = Upep O. For asubset S C V¥ and a vertex v € V, let setvals(v) denote
the number of edges of S containing v, and let S¢ denote the complement of S in
V#) . That is, S¢ = V¥ \ S.

We will often make use of the following lemma.

Lemma 3.2.2 Suppose that X = (V,E) is a self-complementary k-hypergraph.
(1) X is I-subset-reqular if and only if valx(v) = valxc(v) for all v € V.

(2) If V={oco}UZ, and = (c0)(0 1 ... (n—1)) € Ant(X) for an even positive

integer n, then X is 1-subset-regular if and only if valx(0) = valxc(0).
Proof:

(1) If valx(v) = valxc(v), then

valx(v) = % (valx (v) + valxe(v)) = % (setvalyw (v)) = %(Dk);’__ll)’

which is independent of the choice of v € V. Thus X is 1-subset-regular. Con-
versely, if X is 1-subset-regular, then since X = X, the hypergraph X¢ is also
1-subset-regular and has the same 1-valency as X. Thus valx(v) = valxc(v) for

all v € V.
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(2) If X is l-subset-regular, then as 0 € V, valx(0) = valxc(0) by part (1).

Conversely, suppose that valy(0) = valxc(0). Observe that for any orbit O of
0 on V¥ an element z € Z, lies in ¢ edges of O N & if and only if (z — 1)y
lies in ¢ edges of O N &Y, which holds if and only if (z — 2), lies in ¢ edges
of ON&. This implies that valx(x) = valyc(y) whenever z # y (mod 2), and
valx(z) = valx(y) whenever z = y (mod 2). Now since valx(0) = valxc(0), for

x even and y odd, we have
valx(x) = valx(0) = valxc(0) = valx (y).

Hence valx(z) = valx(y) for all x,y € Z,. Moreover, since § € Ant(X) and 0
fixes 0o, we must also have valyx(00) = valxc(00). Hence valx (v) is independent

of the choice of v € V, and so X is 1-subset-regular.

In Lemma 3.2.5 we will prove that the necessary condition (3.1.3) in Theo-
rem 3.1.2 on the order n of a self-complementary k-hypergraph is sufficient by in-
duction on the congruence class of n modulo 2% In Lemma 3.2.4 we will handle the
base case where n = 1 (mod 2%), that is, n = m2* 4+ 1 for some positive integer
m. We will need to make use of the following lemma, which handles the case where
m = 1.

For a positive integer n, a subset A of Z,, and an element b of Z,, let A+ b

denote the set {(a + b)) : a € A}

Lemma 3.2.3 Let k and a be positive integers such that a > 2 and 2 < k < 2. Let
V = {0} UZga, where 0o & Zga. There exists a 1-subset-reqular self-complementary

k-hypergraph on V with antimorphism

0= (c0)(012 - (20— 1)),
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Proof: First we will fix an integer r such that 1 < r < 2% and examine the structure
of the orbits of 6 on Zg; . In particular, we will examine how the number of even and
odd elements of E € Z\) affect the valency of 0 in the orbit of 6 on Z{. containing
E.

We can write r = 2*M for some integer z such that 0 < z < a — 1 and some
odd positive integer M. Let O be an orbit of # on 7. Then O has length 2%~ for
some z such that 0 < x < z. For z € {0,1,...,z}, we will define a partition of the
set {0,1,2,...,2% — 1} into 2 subsets S¥,S¥,S5,...,S5_, of consecutive integers,
each of length 2%, For each w € {0,1,...,2" — 1}, set 5% = {w2* " +v :v €
{0,1,...,27* — 1}}. Then S = S§ + w2**. If O has length 2%, any edge
E € O contains exactly r/2% elements from each subset S? in the partition, and
E NSy must be a translation of £ NS, for all w = 0,1,...,2° — 1. In particular
ENS; = ENS§+w2*~*. Now if ENS{ contains ¢ even elements and j odd elements,
then £?N.S2 contains j even elements and i odd elements. Hence, for any orbit O of 6
on Zg;) of length 297*_ there exist nonnegative integers i and j such that i+ j = r/2%,
and every edge of O contains exactly ¢ even elements and j odd elements of S7, or
vice versa. Moreover, if £ € O and E contains ¢ even and j odd elements of S§,

2, and 0 lies

929 T -1

then 0 lies in exactly i elements of the sequence F, EGQ, E94, e o
in exactly j = /2% — i elements of the sequence E? E93, E” ... FE

Now for x € {0,1,...,2} and i € {0,1,...,r/2*"'} and j = r/2% — i, let
&;; denote the set of orbits of 6 on th? of length 27" whose edges contain i even
and j odd elements in the set S7, or which contain j even and ¢ odd elements
of S5. For each O € &}, choose an edge £2 € O. If the number of even ele-
ments of F does not exceed the number of odd elements of E, colour the edges
in the sequence F, E92,E94, e ,E("Qa_m*2 red and colour the edges in the sequence
EY, Eag, E'957 e E?" 7! blue. If E has more even entries than odd entries, colour

the edges in the sequence F, E(’Z, E94, e ,E(’ka_2 blue and colour the edges in the
sequence F E% E” ... E°

20—

" red. For any subset S of Zg;), let S;eq and Spiye
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denote the set of red and blue edges in S, respectively.

Now since ¢ < j, for each orbit O € &; we have
setvalp,,,.(0) — setvalp,,,(0) = j — .

Let & be a subset of Zg;) which contains the red edges from exactly Hgf’]‘ / QJ

orbits of £, and the blue edges from the remaining orbits of £F., for all 0 < x < z,

17]’ 27]’

and for all 4,7 such that 0 < i < r/2** and j = r/2% — 4. If |8fj} is even, say

}Sfj} = 2v for a positive integer v, then
setvalu(gizjmgr)(O) — setvalu(gfjmég)(O) = (vi+vj)— (vi+vj)=0.
If ‘Sf]‘ is odd, say ‘5;”]‘ = 2v — 1 for a positive integer v, then

setvalu(gijmgr)(()) - setvalu(gijmég)(O)
=((v—-1)i+vj)— (vi+ (v —1)j)
=j — 1.
Now if x < z, then i + j = r/2* = 2*7*M is even, which implies that j — i is even.

On the other hand, if x = z, then i + j = r/2% = r/2* = M is odd, which implies
that j — ¢ is odd.

e Claim I: Suppose that 0 < i < j. For a fixed integer r = 2 M such that M is
odd and 1 < r < 2% exactly one of the sets 55]- of orbits of 6 on Zgl) has odd

cardinality.

e Proof of Claim I: First, note that the set S7 contains exactly 2¢7*~! odd
elements and 2°7*~! even elements. Thus for j > 2°7*7!, we have £7; = 0,

which has even cardinality. Hence we need only consider the case where 0 <

i< j <20l

We will count the number of orbits in £7; where ¢ and j are nonnegative integers

such that ¢ < r/2**! and i + j = r/2* = M. The number of ways to choose i
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20,7271

even elements and j odd elements from the set S§ is (| )(22271), which is

also equal to the number of ways to choose 7 odd elements and j even elements

from this set. Hence the number of edges which lie in ¢(&7;) is 2(2‘1771) (2%;71).

Since each orbit of £F; has length 2%7%, the number of orbits in &, is

A1 1 2(17271 2(1*271
‘gm\—m< . )( ; > (3.2.1)

Case 1: z = a — 1. In this case we have r = 2971 M < 2% for odd M, which
implies that M = 1 and r = 2*7!. Since i + j = r/2* = 2¢71/2%71 = 1 and

1 < 7, we must have ¢+ = 0 and j = 1, and so

. w120y /20
ol les =) (1) =

which is odd.

Case 2: z < a— 1. In this case, since i + 5 = M is odd, and the cardi-
nality in (3.2.1) is an integer, Lemma A.0.15 implies that |£7;| is odd if and
only if i € {0,297*71} or j € {0,2°7*7!}. We will show that exactly one of these

situations occurs for i < 7.

Since 0 < i < j < 2°*71 it follows that j # 0 and ¢ # 2!, Hence
we need only check that exactly one of the conditions i = 0 and j = 2¢7*1
hold. Since z < a — 1, we must have r # 2%~!. Suppose r < 2971, Then if
j =21 we have i = r/2° — j = r/2* — 207=71 < gam=—l _ ga—al — )
contradicting the assumption that ¢ > 0. However, there are edges such that
i=0and j =1r/2° <2°71/2% = 297*=1 On the other hand, if r > 27!  then
if i = 0, we have j = /2% > 2971/2% = 20771 and so j > 29771 giving a
contradiction. However, there are edges such that j = 29771, for in this case

i=7)2° —j=r/27 - 2071 > 2071 /97 90m L = () 50 0 < i < 20777,

We have shown that j # 0, i # 297!, and that if » < 297! then j # 207*1
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but there exist orbits with ¢ = 0 and j = r/2* < 2°7*"! and that if r > 207!
then ¢ # 0 but there exist orbits with j = 29*~! and i = r/2* — j > 0.

Thus exactly one of the two situations i = 0 and j = 2¢7*~! occurs for i < j,
and neither of the two situations i = 2%*~! and j = 0 can occur. Thus if

z < a — 1, exactly one of ‘gdzr/y

z ] z 3
and ‘5(,,/22_2(17271),2%271 is odd, and |€i7j| is

even for all other feasible pairs 7, j. This completes the proof of Claim I.

Claim I and the comments preceding it imply that
setvalg (0) — setvalsc(0) is odd

for all integers r such that 1 < r < 2% Now fix an integer k£ such that 2 < k < 2%,
Then 1 <k —1 < 2% and so

setvalg, ¢ (0) — setvalgguékc_l(O) (3.2.2)
= <setvalgk(0) — setvalge (0)) + <setval3k71(0) — setvalgkcil(O)>
1s even.
Now we will find subsets &,_, C Zgz_l) and &, C Zg{? which are related to
Er_y and &, but for which the even quantity in (3.2.2) is bounded. Now for each

r € {k—1,k}, if r = 2°M, then for all integers z,i and j such that 0 < z < z,

0<i<r/2T and j = r/2% — i, we define \"(4, j, z) as
A'(i,7,x) = setvalu(gijmgr)(O) — setvalu(gijmgg)(O) =j—i.

Note that 0 < j —i <r. Thus setvals (0) — setvalgc(0) is equal to the sum of a set

A, of nonnegative integers for
= {N(,5,7):0<2<2,0<i<r/2° j=r/2"—i},

and each A € A, satisfies 0 < A\ < r. Hence Lemma A.0.16 implies that there is a
function v : A, — {—1,1} such that 0 < Y7\, Av()) <.
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Now form a subset & of Zg;) from &, by swapping red edges for blue edges, and
vice versa, in £; N &, whenever v(\"(i,§,z)) = —1. Then setvalg: (0) — setvalgryc(0)

has the same parity as setvalg (0) — setvalsc(0). Moreover,

setvalg (0) — setval(gyc(0) = Z Av()

AEA,

and so

0 < setvalg, (0) — setvalgye(0) <.
Thus
setvalgr e (0) — setvalieryeye e (0) (3.2.3)
= (setvalg;ﬂ (0) — setval(gé)c(0)> + <setvalg;€_1(0) — setval(g;_l)c(0)>

is equal to a nonnegative even number 2y such that 2u < 2k — 1. But 2u is even and

2k — 1 is odd, so we must have 2u < 2k — 2, which implies that 0 < pu < k — 1.

Case 1: 2 < k < 2°7'. Since k or k — 1 is even, it follows that r — p is even
for some r € {k,k — 1}. Fix this 7. Then the system
—it+j=p
t+g)=r
has an integer solution i = (r — p)/2, j = (r + u)/2. Also, since 0 < pu < r, we are
guaranteed that 0 < 4,5 < r, and since r < k < 27! we also have 0 < 7,5 < 2%°!. For

this 7 there is an orbit O € &; of 6 on 75 of full length 29— such that & contains
the red edges of O, and

setvalp,,,.(0) — setvalp, ,(0) = j —i = p.

Let -1 U &, be the set of edges in Zgﬁfl) U Zé’i) obtained from &, | U &; by

swapping red edges for blue edges in the orbit O. Then (3.2.3) implies that

setvalg,ue, ,(0) — setvalgogc (0)
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= (setvalglfeugl;_l(O) — setval(gllc)cu(gé_l)c(()» — 2/
— 24— 24 =0. (3.2.4)
Finally, define X} to be the hypergraph with vertex set V = Zg« U {00} and edge
set £ =& U{FEU{oo}: E € &_1}. Since 6 maps red edges onto blue edges within
each orbit, and vice versa, it follows that § € Ant(X}), and so A} is self-comple-

mentary. Moreover, (3.2.4) implies that valy, (0) = valyc(0), and so Lemma 3.2.2(2)

guarantees that X} is 1-subset-regular.

Case 2: 27" < k < 2% In this case let k = 2* — (k — 1). Then 2 < k < 2%
and so by Case 1 there exists a 1-subset-regular self-complementary I%—hypergraph
A3 on V with antimorphism 6. Let F; denote the set of edges of A} which do not

contain oo, and let
Fi y={E\{o0}:E€&(X;),00€ E}.
Since A&} is 1-subset-regular and self-complementary, it follows that
setvalr.ur, (0) = setvalfkcufkcil(O). (3.2.5)

Let
Eo1 = {Zga \E F e ffg}

and

Ee={Zy \E:E€cF, }.

Then &1 C ngl_l) and &, C Z. Moreover, (3.2.5) implies that
setvalg,e, ,(0) = setvalgoygc (0). (3.2.6)

Now define X to be the hypergraph with vertex set V = Zs. U {oo} and edge set
E =& U{EU{x} : EF € &_1}. Then X, is a k-hypergraph on V, and since
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6 € Ant(X}) it follows that § € Ant(X}), and so X}, is self-complementary. Moreover,
(3.2.6) implies that valy,(0) = valyc(0), and so Lemma 3.2.2(2) guarantees that Xj,

is 1-subset-regular, as required. i

We are on our way to proving the sufficiency of condition (3.2.7) in the main
result of this section, Theorem 3.2.6. In the next lemma, we state and prove the base

case for the inductive proof of this sufficiency, which is given in Lemma 3.2.5.

Lemma 3.2.4 Let a, k, and m be positive integers such that a > 2 and kjpa) > 2. Let
R = Zpaa, and let V = {oo} UR. There exists a 1-subset-reqular self-complementary
k-hypergraph on V with antimorphism

m—1
0 =(c0) [J (5252 +1,....(j + 1)2* - 1).
j=0

Proof: We will construct a 1-subset-regular self-complementary k-hypergraph )i on
VY with antimorphism 6.

For each j € Z,,, let
R; ={j2%72°+1,...,(j +1)2* — 1},

and let
0, = (0c0)(j2%, 2+ 1,...,(j +1)2* = 1) € Sym(R; U {o0}).
By Lemma 3.2.3, there exists a 1-subset-regular self-complementary r-hypergraph A/
on {oo} UR;, with antimorphism 6;, for r € {2,3,...,2% — 1}.
For each E € V¥ let C1(E) = {j € Zp : 2 < |({c0} UR,) N E| < 20 — 1}.
If C1(E) # 0, set j1(E) = min{j : j € C1(E)}. If E € V¥ and C\(E) = 0, then
|(({oo} UR;)NE| < 1or |[({oc} UR;)NE| > 2% for all j € Zy,. Since 2 < ko) < 2%,

this implies that one of the following conditions hold when C}(E) = 0:

e 0o ¢ FE, all cycles of 6 contain 0,1, or 2% elements of F, and at least two

nontrivial cycles of # contain exactly one element of F.
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e o0 € F all nontrivial cycles of 6 contain at least 2* — 1 elements of F, and at

least two nontrivial cycles of 6 contain exactly 2 — 1 elements of F.

For each E € V¥ with C)(E) = 0, define Cy(E) = {j € Z,, : [(ENR;)| € {1,2°—1}}.
Then |Cy(E)| > 2. Let i1(F) and i3(E) be the two smallest elements of Cy(FE).

Now define )}, to be the k-hypergraph with vertex set V and edge set £ such
that an element £ € V* is in & if and only if one of the following conditions hold
for j1 = j1(E), i1 = i1(E), and iy = iy(E).

(i) CL(E) #£ 0, |[EN({oc} UR,,)| =7, and EN ({oo} UR;,) € € (AL).
(ii)) Ci(E)=0,00 ¢ E, ENR;, ={z}, ENR;, = {y}, and (z + y)q € {1, 2}.
(i) C1(E) =0, 00 € B, Ry, \ = {x}, Riy \ E = {y}, and (z + )y € {1,2}.

We will prove that ) is 1-subset-regular and self-complementary with antimorphism
6.

First we will show that ) is self-complementary. Note that £¢ = V*) \ € is
the set of elements £ of V*) for which one of the following conditions hold. (Again,
J1=71(E), i1 =i1(E), and iy = iy(F).)

(1) Ci(E) #0, [EN ({oc} UR;,)| =7, and EN ({00} UR;,) & € (A).
(ii) Ci(E)=0,00 ¢ E, ENR;, ={z}, ENR;, ={y}, (xr +y)u € {0,3}.
(iii) C1(E)=0,00€ E, R;, \ E={z}, Ri, \ E = {y}, and (z +y);4 € {0,3}.

Observe that 6 [(ojur,, = 05, € Ant(AJ'). Hence an element E € V*®) satisfies
condition (i) if and only if E? satisfies condition (i)’. Also, for € R;,, y € R;,, and
a > 2, we have (2% + y?)y = ((z + 1)pe; + (y + D)pe)) gy = (z + y + 2)g, s0 6 maps
elements = and y with (z,y) € R;, x Ry, and (z + y)q € {1,2} to elements 2 and
y? with (27,y%) € R;; x Ry, and (2% + %) € {0, 3}, and vice versa. It follows that

an element E € V) satisfies condition (ii) if and only if E? satisfies condition (ii)’,
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and E satisfies condition (iii) if and only if EY satisfies condition (iii)’. Hence F € &
if and only if £ € £. Thus 6 € Ant()}) and ) is self-complementary.

Next we show that ) is 1-subset-regular, which by Lemma 3.2.2(1) is true if
and only if valy, (v) = valyc(v) for all v € V. Since § € Ant(Yy) and 6 fixes oo, we
certainly have valy, (c0) = valyc(oo). It remains to show that valy, (v) = valyc(v)
for all v € R.

Let 5/ € Z,, and suppose that v € R;,. Let O be an orbit of ¢ on V) which
contains edges containing v. Let E € O, and set C1(0) = C1(E), and if C1(E) # 0,
set j1(O) = j1(E). Note that Cy(F) is constant over all £ € O, and so C1(O) is
independent of our choice of F € O, and so is j;(0), if it exists. If C1(O) = 0, set
Cy(0) = Cy(E), and set i1(O) = i1(F) and i5(O) = ix(E). If C1(O) = 0, then C5(O)
is constant over all £ € O, and so C3(0), i1(O), and i2(O) are also independent of

our choice of E. Now O is one of four types:
e TYPE 1: C,(0) # 0 and j' # ,(0O).
e TYPE 2: C1(O) # 0 and j' = j:(O).
e TYPE 3: C1(0) =0 and j' & {i1(0),i2(0)}.
e TYPE 4: C1(0) =0 and j' € {i1(0),i2(0)}.

For each i € {1,2,3,4}, let P; be the set of orbits of # on V*) of TYPE i which

contain edges containing v. We will show that

setvalypyne(v) = setvalyp,nsc (v)

for all 7 € {1,2,3,4}. For each i, let (U(P;)NE), ={E cU(P;)NE :v € E}, and let
UP)NE), ={E cU(P,)NEC v e E}.
First consider the orbits of P;. Define the mapping 3; : (U(P1)NE), — (U(P1)N
£y by
E% = (R;, NE)U(E\Ry,),
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for all E € (U(Py) NE),, where j; = j,(O) for the orbit O of # on V*) containing E.
Since j' # j; for all orbits O € Py, and since v € R/, it follows that for all
E € UP)NE), we have v € E\ R;,. Hence 3 maps edges of (U(Py) NE), to
edges of (U(Py) N EY),. Moreover, one can verify that 3; is invertible, with inverse
Br ! defined by
B = (le N Ee”) U(E\R;),

for all E € (U(Py) N EY),, where j; = j1(O) for the orbit O of # on V*) containing
E. We conclude that |(U(Py) N E),| = [U(P1) N ET),|, and hence

setvalyp,)ne(v) = setvalyp,ngc (v).

Now consider the orbits of Py. Every orbit O of P, satisfies j; (O) = j/, and so
EN({oc}UR;,) € E(AM), where r = |EN ({0} UR,)|, for all E € ONE. Observe
that since AJ! is 1-subset-regular and self-complementary for all 7, by Lemma 3.2.2(1)
we have

val i (v) = val(Ml)c(U).
This implies that there is a bijection § between the set of edges of AJ! containing v and
the set of edges of (A71)¢ containing v. Now define the mapping 5 : (U(P2) NE), —
(U(P2) NET), by

E® = (EN({oc} UR)) U (E\ ({00} UR))),

for all E € (U(P2)NE),, where j; = j1(O) for the orbit O of # on V*) containing E.

Since j' = j; for all orbits O € Ps, and v € R;,, the definition of § guarantees
that v € EN ({oo} UR,,) if and only if v € (E N ({oo} UR;,))°. Also, condition
(i) guarantees that £ € U(P,) N € if and only if B € U(P,) N EC. Hence B, maps
edges of (U(P2) NE), to edges of (U(P2) NEY),. Moreover, one can verify that (3, is

invertible, with inverse 3; ' defined by

E% = (En({oc} UR,)) T U(EN ({oo} UR,,)),
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for all E € (U(Py) NEC),, where j; = j;(O) for the orbit O of § on V*) containing
E. We conclude that [(U(Ps) NE),| = |(U(P2) N EC),|, and hence

setvalyp,)ne(v) = setvalyp,nec (v).

Now consider the orbits of P3. Define the mapping 33 : (U(Ps)NE), — (U(P3)N
£y by
E® = ((Ri, URy,) NE’) U (E\ (Ri; URy,)),
for all E € (U(P3)NE),, where i; = i1(O) and iy = i5(O) for the orbit O of # on V*)
containing F.
Since j' & {i1, 42} for all orbits O € Ps, and v € Ry, for all E € (U(P3)NE), we
have v € E\(R;,UR;,). Hence (33 maps edges of (U(P3)NE), to edges of (U(P3)NEC),.

Moreover, one can verify that (3 is invertible, with inverse 35 ' defined by
E%' = (R URL) N E”" ) U(E\ (R, URy)),

for all E € (U(P3) N EY),, where i; = i1(O) and iy = is(O) for the orbit O of § on
V*) containing E. We conclude that |(U(Ps) N E),| = [U(Ps) N E),|, and hence

setvalypy)ne (V) = setvalypynec (v).

Finally, consider the orbits of P,. Every orbit O of Py satisfies j' € {iy,is}.
Since v € Rj, we must have v € R;, UR,;,. Assume, without loss of generality, that

v € R;,. Define the mapping B4 : U(Ps) NE), — U(Py) NEC), by
2o (Rb N E‘)Q) U(E\Ry,),

for all £ € (U(Py) N E),, where in each case iy = i1(O) and is = i2(O) for the
orbit O of § on V¥ containing £. Now since v € R,,, it follows that v € E \
R;, for all E in (U(Py) NE),. Now observe that if E € (U(Py) NE),, then either
IENR;y| = |ENR,| = 1or |Ry \ El = |Ri, \ E|]| = 1. In the former case,
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we must have ENR; = {v} and ENR,;, = {w}, for some w € R;, such that
(v+w) € {1,2}, which implies that ENR;, = {v}, E%*NR;, = {(w+2)pe}, and
(v+ (w + 2)pa))lg = (v+w+2) € {0,3}, since @ > 2. In the latter case, we must
have R;, \ E = {z} and R;, \ E = {y}, for some z € R;, and y € R;, such that z # v
and (z +y)u € {1,2}, which implies that R;, \ E* = {z}, Ry, \ E® = {(y + 2) e},
and (2 + (y + 2)pe))y = (@ +y + 2)py € {0,3}, since a > 2. Hence conditions (ii)
and (iii) guarantee that §; maps edges of (U(P,) N E), to edges of (U(Py) N EC),.

Moreover, the permutation 3, is invertible, with inverse 3, defined by
B% = (RN E”") U(E\Ry),

for all E € (U(Py) NEY),, where i; = i1 (O) and iy = iy(O) for the orbit O of § on
V*) containing E. We conclude that |(U(Py) N E),| = |U(Ps) N ES),|, and hence

setvalyp,)ne(v) = setvalyp,)nec (v).

Now observe that
4 4
valy, (v) = Z setvalyp,yne(v) = Z setvalyp,nec (v) = valyc (v).
i=1 i=1
Since j' was an arbitrary element of Zy,, we conclude that valy, (v) = valyc(v) for
all v € R = Ujez,, R, and hence for all v € V = R U {oo}. Thus Lemma 3.2.2(1)
implies that ) is 1-subset-regular. i

It should be noted that Lemma 3.2.4 was proved previously for the case where
a = 2. Rao handled the case where a = 2 and k = 2 in [27], and Potoénik and Sajna
handled the case where a = 2 and k = 3 in [23].

We are ready to prove the sufficiency of condition (3.1.3) in Theorem 3.1.2.
Lemma 3.2.5 demonstrates the existence of a 1-subset-regular self-complementary

uniform hypergraph of rank k and order n for every pair (n,k) satisfying condi-

tion (3.2.7).
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Lemma 3.2.5 Let a, k, m, and s be positive integers such that a > 2 and s <
kppaj. Let R = Zpga, let S = {001,009,...,005} such that SNR = 0, and let
Y = SUR. There exists a 1-subset-reqular self-complementary k-hypergraph on V

with antimorphism
m—1
0 = (001)(002) -+ (00,) [ (2%, 42 + 1,.... (j + 1)2* = 1).
§=0

Proof: Fix positive integers a and m such that a > 2. We prove that there ex-
ists a 1-subset-regular self-complementary k-hypergraph on V with antimorphism 6

for all positive integers k and s such that 1 < s < Kjpa). The proof is by induction on s.

Base Step: s = 1. In this case, since s < kjga), we have kpe) > 2, and so the ex-
istence of a 1-subset-regular self-complementary k-hypergraph on V = {001} U Z,20

with antimorphism

—_

m

0= (c0r) [] (252" +1,..., (G + 1)2* = 1)
0

J=

follows from Lemma 3.2.4. Hence the result holds for s = 1.
Induction Step: Suppose s > 1, and assume that there exists a 1-subset-regular
self-complementary /%—hypergraph Z; on

f} = {0017 SR 7008—1} U ZmQ“

with antimorphism

—

m—

0 = (001) -+ (00sn) [ (52°, 52 +1,...,(j + 1)2° = 1),
7=0

for all k such that 1 <s—1< l;[ga}.

Now let k be a positive integer such that s < kpz.;. We will construct a 1-subset-

regular self-complementary k-hypergraph on V with antimorphism . Now 1 < s—1 <
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kp2«) and so by the induction hypothesis, there exists a 1-subset-regular self-comple-
mentary k-hypergraph Z; on V with antimorphism . Moreover, since s > 2, we have
kjpe) > 3, and so (k —1)[2e) = kjge) — 1. This implies that 1 < s—1 < (k—1)[g4], and so
by the induction hypothesis, there also exists a 1-subset-regular self-complementary
(k — 1)-hypergraph Z;_; on V with antimorphism 6.

Let Zj be the k-hypergraph with vertex set V = YU {o0s} and edge set

£ =EZ) | J{{oo} UE : E € E(Z1n)}

Since 0 |,= 0 € Ant(Z;,) N Ant(Z;,_,), and 6 fixes oo,, it follows that E € € if and
only if £ € £C. Hence § € Ant(Z;) and Z;, is self-complementary. Moreover, for all

v e f), we have

valg, (v) = valyg, (v) +valy,_, (v)
= valyo(v) +valze (v)

= valzc (v).

Since the antimorphism 6 fixes co,, we also have valz, (cos) = valzc(co;), and so
valg, (v) = valzc(v) for all v € VU {oo} = V. Thus Lemma 3.2.2(1) implies that 2,
is 1-subset-regular.

Hence by induction on s, there exists a 1-subset-regular self-complementary k-

hypergraph on V with antimorphism 6 for every positive integer s < ko). |

Theorem 3.2.6 Let k and n be positive integers such that 1 < k <n. There exists a
1-subset-reqular self-complementary k-hypergraph of order n if and only if there exists

an integer a such that max{i: 2° | k} < a < min{i : 2' > k} and

N[2a] € {1, 2,... ,k[Qa} - 1}. (3.2.7)
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Proof: The necessity of condition (3.2.7) follows from Theorem 3.1.2. Suppose that
n satisfies condition (3.2.7). Then n = m2® + s for some positive integers a, m, and
s such that max{i : 2" | k} < a < min{i : 2° > k} and 1 < s < kpo. If a = 1,
then 1 < s < kjge cannot hold, and so in this case the sufficiency of condition (3.2.7)
holds vacuously. On the other hand, if a > 2, then the existence of a 1-subset-regular
self-complementary k-hypergraph of order n follows from Lemma 3.2.5, and so con-

dition (3.2.7) is sufficient in this case also. |

Lemma 3.1.3 states that the necessary and sufficient conditions (3.2.7) of Theo-
rem 3.2.6 are equivalent to the necessary conditions (3.1.5) of Theorem 3.1.4 in the
case t = 1. We obtain the following alternative statement of the necessary and suf-
ficient conditions on the order of a 1-subset-regular self-complementary k-uniform

hypergraph in terms of the binary representation of &.

Theorem 3.2.7 Let k and n be positive integers such that 1 < k < n, and let b
be the binary representation of k. There exists a 1-subset-reqular self-complementary

k-hypergraph of order n if and only if
Njge+1] € {1, 2., k’[24+1] — 1} (328)

for some € € supp(b).

3.2.3 Open problem

The author proposes the following problem.

Problem 3.2.8 For given integers k > 2 and t > 1, determine the set Ly of all
integers n for which there exists a t-subset-reqular self-complementary k-hypergraph

of order n.
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Theorem 3.2.1 gives a solution to problem 3.2.8 in the case where k € {2,3}, and
Theorem 3.2.6 solves this problem for all positive integers k in the case where ¢t = 1.

However, Problem 3.2.8 remains mainly unsolved.

3.2.4 Connections to design theory

Recall that if a t-subset-regular k-uniform hypergraph X of order n is self-complemen-
tary, then X and its complement X¢ are both t-(n, k, \) designs with \ = (Z:i) /2.
Hence the pair {X, X} is an LS[2](¢, k,n) in which the ¢-designs are isomorphic.
In [12], Hartman considered the problem of halving the complete t-(n, k, (Z:ﬁ))
design into two ¢-(n, k, (}~})/2) designs to form a LS[2](t, k,n), and he conjectured

that the basic necessary conditions on the order n given by Lemma 3.1.1 are also

sufficient.

Conjecture 3.2.9 [12] There ezists a LS[2)(t, k,n) if and only if (}_!) is even for
i=0,1,... 1.

Baranyai [5] proved that Hartman’s conjecture is true for ¢ = 1. The combined
efforts of the authors Ajoodani-Namini, Alltop, Dehon, Hartman, Khosrovshahi, and
Teirlinck in the works [5, 2, 3, 4, 1, 8, 12, 16, 34] proved that Hartman’s conjecture
is true for t = 2. However, it is important to note that this result does not provide
a solution to Problem 3.2.8 for the case t = 2, since it does not guarantee that
there exists a LS[2](2,k,n) for every admissible order of Lemma 3.1.1 in which the
2-designs are isomorphic. Hence these results on halving the complete designs do not
show the existence of 2-subset-regular self-complementary k-hypergraphs of every
admissible order. The only previous result that the author has found on halving the
complete design into two isomorphic 2-designs is Knor and Potoc¢nik’s construction

for 2-subset-regular self-complementary 3-hypergraphs of every admissible order [18].



Chapter 4

Transitive self~-complementary

hypergraphs

4.1 Necessary conditions on order

4.1.1 Previous results: vertex transitivity

In this section, we present the known necessary conditions on the order n of a vertex
transitive self-complementary k-hypergraph X in the case that k has the form k = 2°
or k = 2°+ 1 for some positive integer £ and n = 1 (mod 2*!). Such a k-hypergraph

X is necessarily 1-subset-regular. Hence Corollary 3.1.5 implies that
Njge+1) € {1, 2,...,k— 1}.

However, the vertex-transitivity of X implies even stronger necessary conditions on
its order n in the case n = 1 (mod 2¢F!), as the next result due to Potoénik and
Sajna [24] shows.

Recall that for a positive integer n and a prime number p, the symbol n,, denotes

the largest integer 7 such that p divides n.

o7
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Theorem 4.1.1 [24] Let { be a positive integer, let k = 2° or k = 2° + 1, and let
n =1 (mod 2¢). If there exists a vertex transitive self-complementary k-hypergraph
of order n, then

p"® =1 (mod 2°)  for every prime p.

Theorem 4.1.1 was proved by Li [20] for k¥ = 2 and n = 1 (mod 4) for the
special case when n is a product of two distinct primes. Li’s proof is based on a
classification of vertex transitive graphs of order pg (where p # ¢ are primes), which
was obtained by Praeger and Xu [26] using the classification of finite simple groups.
In 1999, Muzychuk [21] gave an algebraic proof of Theorem 4.1.1 for the case k = 2
and n = 1 (mod 4). Consequently, integers n satisfying p"® = 1 (mod 4) for all
primes p are called Muzychuk integers. In 2007, Potoénik and Sajna extended the
idea in Muzychuk’s proof to prove Theorem 4.1.1.

The following immediate corollary to Theorem 4.1.1 gives necessary conditions
on the prime divisors of the order n of a vertex transitive self-complementary k-hyper-

graph for small values of the rank k when n satisfies the hypotheses of Theorem 4.1.1.

Corollary 4.1.2 Suppose X is a vertex transitive self-complementary k-hypergraph
of order n, and let p" be the highest power of a prime p that divides n. Then the

following conditions hold.
(a) If k =2, then p" =1 (mod 4).
(b) If k =3 and n is odd, then p" =1 (mod 4).

(¢) If k=4 or5, and n =1 (mod 8), then p" =1 (mod 8).

4.1.2 New results: t-fold-transitivity

Suppose that k = 2¢ or k = 2° + 1 for a positive integer ¢, and that ¢ > 1 is an

integer. If X is a t-transitive self-complementary k-hypergraph of order n, then X is
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necessarily ¢-subset-regular. Hence Corollary 3.1.5 implies that
Nge+1) € {t,t+1, ...... Jk— 1}.

However, the t-transitivity of X implies even stronger necessary conditions on its

order n in the cases where n =t (mod 2¢7!), as the next result shows.

Theorem 4.1.3 Let ¢ be a positive integer, let k = 2° ork = 2°+1, let t be a positive
integer and let n =t (mod 2¢TY). If there exists a t-transitive self-complementary k-

hypergraph of order n, then
p e =1 (mod 2°4Y)  for every prime p.

Proof: When t = 1 the result follows directly from Theorem 4.1.1, so we may assume
that t > 2.

Suppose that X = (V| F) is a t-transitive self-complementary k-hypergraph of
order n = t (mod 21). Let vy, vq,...,v,1 € V, and let § € Ant(X). Since X is
t-transitive, it is certainly (£ — 1)-transitive, and so there exists o € Aut(X) such that
097 = (v9)? = v, for all i € {1,2,...,t — 1}. Hence o fixes {vy,...,v,_ 1} pointwise
and fo € Ant(X). That is, there exists an antimorphism 6* = 0o of X which fixes
every element in the set {vy,...,v,1}. Also, since X is t-transitive, it follows that
N2} Aut(X),, acts transitively on V' \ {v1, v, ..., v 1}.

For each i € {1,2,...,t — 1}, let E,, denote the set of edges of E containing
v;, and F,, denote the set of edges of V) \ E containing v;. Then every permuta-
tion in (2] Aut(X),, must map edges in |J._; E,, onto edges in | J'_] F,,, and the
permutation 6* € Ant(X) must map edges in Uf: E,, onto edges in Uf;} E,,. Thus
X = (V\A{v1,v2,...,001} E\ Uf;} E,,) is a self-complementary k-hypergraph with

~

0" € Ant(X)

and

() Aut(X),, < Aut(X).
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Moreover, the group ()'—; Aut(X),, acts transitively on V(X) = V\ {v1,va, ..., v, 1}

Hence X is a vertex transitive self-complementary k-hypergraph of order
V\A{v,v2,...,01} =n—t+1=1 (mod 2"),
and so by Theorem 4.1.1 it follows that

p" e =1 (mod 2°7Y)  for every prime p.

When ¢ = 2, Theorem 4.1.3 gives necessary conditions on the order of a doubly

transitive self-complementary k-hypergraph in the cases where k = 2¢ or k = 2¢ + 1.

Corollary 4.1.4 Let ¢ be a positive integer, let k = 2° or k = 2° + 1, and suppose
n = 2 (mod 2FY). If there ewists a doubly transitive self-complementary k-hyper-

graph of order n, then

p" e =1 (mod 271 for every prime p.

The following corollary gives necessary conditions on the prime divisors of n — 1,
where n is the order of a doubly transitive self-complementary k-hypergraph satisfying

the hypotheses of Corollary 4.1.4, for small values of the rank k.

Corollary 4.1.5 Let X be a doubly transitive self-complementary k-hypergraph of
order n, and let p" be the highest power of a prime p that divides n — 1. Then the

following conditions hold.

(a) If k=3, then p" =1 (mod 4).
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(b) If k =4 and n is even, then p" = 1 (mod 8).

(¢c) If k=5 and n =2 (mod 8), then p" =1 (mod 8). 1

4.2 Sufficient conditions on order

4.2.1 Previous results

In this section, we state previous results due to Rao [27], and Potoénik and Sajna
[24, 25], which show that the necessary conditions of Theorem 4.1.1 are sufficient
when k € {2,3}. We also state some other known sufficient conditions on the orders
of vertex transitive and doubly transitive self-complementary k-uniform hypergraphs.

The following result is a partial converse to Theorem 4.1.1 in the case where n

is a prime power. It is due to Potoénik and Sajna.

Theorem 4.2.1 [24] There exists a vertex transitive self-complementary k-hyper-

graph of order n for every prime power n congruent to 1 modulo 2!, where { =

max{k(g), (/{Z — 1)(2)}.

Poto¢nik and Sajna proved Theorem 4.2.1 using a Paley k-hypergraph construc-
tion. We will generalize their construction in Section 4.2.2 and prove that the converse
to Theorem 4.1.1 is true in general, and not just when n is a prime power.

Recall that a Muzychuk integeris a positive integer n satisfying p"® =1 ( mod 4)
for all primes p. In [27], Rao constructed vertex transitive self-complementary graphs
of order n for every Muzychuk integer n. In [24], Potocnik and Sajna used a wreath
product construction to find vertex transitive self-complementary 3-hypergraphs of
order n for every Muzychuk integer n. Hence the condition of Theorem 4.1.1 is

sufficient when k = 2, or when k = 3 and n is odd, as the next result states.
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Theorem 4.2.2 Let n be a positive integer.

(1) [27] There exists a vertex transitive self-complementary graph of order n if and

only if n 1s a Muzychuk integer.

(2) [24] If n is odd, there exists a vertex transitive self-complementary 3-hypergraph

of order n if and only if n is a Muzychuk integer.

In [24], Potoénik and Sajna also constructed doubly transitive self-complemen-
tary 3-hypergraphs of order ¢ + 1 for every prime power ¢ congruent to 1 modulo
4. Then using a rank increasing construction and a wreath product construction,
they obtained the following sufficient conditions on the order of vertex transitive and

doubly transitive self-complementary k-hypergraphs.

Theorem 4.2.3 [24] Let k be a positive integer, let n be a Muzychuk integer, and

let g be a prime power congruent to 1 modulo 4.

(1) If k = 2 or 3 (mod 4), then there exists a self-complementary vertex transitive

k-hypergraph of order n.

(2) If k = 3 (mod 4), then there ezist self-complementary vertex transitive k-hy-
pergraphs of order 2n and order (1 4+ q)n, and there exists a doubly transitive

self-complementary k-hypergraph of order 1 + q.

4.2.2 New results - Paley uniform hypergraphs

In this section, we present a construction for a vertex transitive self-complementary
uniform hypergraph of order n for every integer n satisfying the necessary conditions
of Theorem 4.1.1, and consequently prove that these necessary conditions are also
sufficient.

We begin with a construction for vertex transitive self-complementary uniform

hypergraphs of prime power order, which is an extension of a construction due to
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Potocnik and Sajna [24] for objects which they named Paley k-uniform hypergraphs.
Their construction is an extension of the well-known construction of Paley graphs
which can be found in Rao [27]. It should be noted that the extension to Paley 3-hy-
pergraphs had been previously introduced by Kocay [19]. Peisert [22] also presented
this construction in the case where k = 2 and r is any divisor of (¢ — 1)/4.

If F is a finite field and ay,as,...,a; € F, the Van der Monde determinant of

ai,ag,...,a is defined as V~M(aq,...,a;) = Hi>j(ai —aj).

Construction 4.2.4 Paley k-uniform hypergraph

Let k be an integer, k > 2, and let ¢ be a prime power such that ¢ = 1 (mod 21,
where ¢ = max{k@), (k — 1)2)}. Let r be a divisor of the integer (¢ — 1)/2°"'. Let
[, be the field of order g, let w be a generator of the multiplicative group F;, and let
¢ = ged(q — 1,7‘(];)). For i = 0,1,...,2c — 1, let F; denote the coset w* <w2r(§)> in

;. Finally, define F, ;. to be the k-hypergraph with vertex set
V(Pynr) =Fq
and edge set
E(Pyyy) = {{ar,...,ax} €FP : VM(ay,...,a1) € U+ UF,_;}.

Definition 4.2.5 For a prime power q, an element a € F;, and an element b € F,

we define the mapping o : Fy — Fy by %0 = ax 4+ b for all x € Fy.

Lemma 4.2.6 Let P, be the Paley k-hypergraph of Construction 4.2.4, and let
c=ged(q — 1,7"(5)).

(1) The edge set of Py, is well defined.

(2) Let s be an integer such that s(g) 15 an odd multiple of c. Then

(CL) <Oéw2.s707061’1> S A'U,Zf(Pq’k’r).
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(b) <Ozws70, a171> S Aut(me) U Ant(PqJC,T).
(3) (Quero,011) < Aut(Pyrr) and (aro,011) < Aut(Py ) U Ant(Py ).

(4) {aap + a € Fy b € Fo} 0 (Aut(Pyry) U Ant(Pyr,r)) = (e g, 1), where s’ =
ged{s:se{1,2,...,q— 1},5(5) is a multiple of c}.

Proof:

(1) Since r divides (g — 1)/2*1, we have ¢ — 1 = 2F1rt for some positive integer ¢.
k
2

Let d be the order of wr( ) in IF:;. Then

q—1 qg—1

= ged(q — 1,7’(’5)) o

First consider the case when k is even. Then k = 2¢k’ for k' odd. Hence

2€+1,rt 2€+1t

= ged(2¢rt, rk(k —1)/2)  ged (2641, 20K (k — 1) /2)

201 t
::@M%“L%1#%—1»:4(gﬁmuk%—1ﬁ)'
Since k' and k — 1 are both odd integers, it follows that ged(4t, k' (k — 1)) is a
divisor of ¢, and so t/ged(4t,k'(k — 1)) is an integer. Thus d is divisible by 4
when k is even. Now suppose that k is odd. Then k — 1 = 2k’ where £’ is odd.

We similarly obtain

d:4(gaﬁzyﬁ, (4.2.1)

and since k£ and k" are both odd, it follows that d is divisible by 4 when £ is odd

also.
Thus d is divisible by 4, and consequently the subgroup <w2r(§)> is of even
order and even index in Fj. Hence —1 € <w2r(§)>. Thus the Van der Monde
determinant of an edge is well defined.

k

2

The number of distinct cosets of (er(g)> in F; is (¢ — 1)/|w2’"( )| = ged(q —
1, 27“(5)) = 2c¢, since ged(q — 1,7“(’;)) =cand d = (¢ — 1)/c is divisible by 4, and
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hence even. Thus Fy, Fi, ..., Fy._; are all of the cosets of (w2r(§)> in F}, and so

the sets
2c—1

A= U F; and A= U F,
partition ;. Hence the edge set of P, is well deﬁned.
wQT(S)

is unique, it follows that <w2r(§)> = (w*). Hence F; = w{w*) for all i =

Since = (¢ — 1)/2¢, and the cyclic subgroup of F; of order (¢ — 1)/2¢

0,1,...,2c— 1, and consequently
wiFj = Wi (W) = W)z (W) = Flit iy

Now if z is an integer, then

c—1 c—1 2c—1

w@atle g — U wthep — U Flit2241)¢) g U Fipe= U F =4

and so
w e = A and WA = A for every integer z. (4.2.2)

On the other hand,

w2 A — U WP = U Flitaze) )2¢] U Fi=4,

=0 1=0

and so

w?* A=A and w?*A=A for every integer z. (4.2.3)

Finally, if ¢ is not a multiple of ¢, say t = ¢z + j where 0 < j < ¢, then

c—1 c—1 c—1
tA t _ _
wd= U wki = U Fitt)ypg = U Flitj+zopag
=0 =0 i=0

contains some cosets F; with 0 <7 < ¢—1 and some cosets F; with ¢ <17 < 2¢—1.

Hence

WANA#D and Ww'ANA#( iftis not a multiple of c. (4.2.4)
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Now let s be an integer such that s(§) is an odd multiple of c. Then (4.2.2)

implies that
W) A= A and W@ A= 4, (4.2.5)

and (4.2.3) implies that

w3 A= A and WG A=A, (4.2.6)
for every integer z.
Observe that for a k-subset {aq,as,..., a1} € IF((Ik), an integer z, and an element
be T, we have
VM(way +0b,...,0'a, +b) = wt(g)VM(al, cee, Q). (4.2.7)

(a) Equations (4.2.7) and (4.2.6) imply that the permutation c,z:sj; maps the
Van der Monde determinant of an element of ng) from A to A, or from A
to A. Tt follows that ae:s is an automorphism of P, ;. We conclude that

<O./w2570, Oé171> S Aut(Pwa).

(b) Equations (4.2.7) and (4.2.5) imply that the permutation s+, maps the
Van der Monde determinant of an element of E(]k) from A to A, or vice versa.
It follows that Q22415 18 an antimorphism of Prr. We conclude that
{agearnsy 1 2 € Z, b € Fg} C Ant(F,,). This implies that (s, a1,1) <
Aut(P, ) U Ant(Pyp ).

(3) Since <wr<§)> = (w°), we have r(g) = mc for an integer m such that ged ((¢ — 1) /¢, m) =
1. It was shown in Part (1) that (¢ — 1)/c is divisible by 4, and hence even, and
so it follows that the integer m must be odd. Hence r(’;) is an odd multiple of ¢,

and so the result follows from Part (2).

(4) Let S ={se{1,2,...,q—1}: s(’;) is a multiple of c¢}. Part (2) implies that

<aw3,0a 04171> S Aut(Pwa) U Ant(Pq,k,r)
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for all s € S. It follows that
{agp:ae (W :se8),belF,} <Aut(P,,) UAnt(P, ). (4.2.8)

But (w® : s € S) is a cyclic group generated by w®, where s’ = ged{s : s € S}.
Hence (4.2.8) implies that

<O[ws/707 O{Ll> S Aut(Png’r) U Ant(Png’T).

It remains to show that if o, € Aut(P, ., )UANt(P,,), then a € (w*'). Suppose,
for the sake of contradiction, that a,;, € Aut(P,x,) U Ant(P, ) but a ¢ (w*).
Now (w®) < (w*) for all s € S. If a = w™ for an integer m such that m(g) is
a multiple of ¢, then m € S, and so a € (w*'), giving a contradiction. Hence we
may assume that a = w™ for an integer n such that n(g) is mot a multiple of c.
Then (4.2.4) implies that w"(2) A # A and w"(2) A # A, and so (4.2.7) implies
that o, & Aut(P, ) U Ant(P, ), giving a contradiction. We conclude that

{Oéa’b ra € FZ, be Fq} N (Aut(Pq,k,r) U AHt(Png’T)) = <Oéws/70, 05171>.

In Chapter 5, we will use Lemma 4.2.6 along with results from finite permutation
group theory to determine the complete automorphism group of the Paley k-hyper-
graph P, of Construction 4.2.4 for the cases in which p is prime and k = 2¢ or

E=20+1.

Lemma 4.2.7 The Paley k-hypergraph Py, defined in Construction 4.2.4 is vertex

transitive and self-complementary.

Proof: Lemma 4.2.6(3) shows that (ay;) < Aut(P,,). Since (a;;) acts transi-
tively on F,, so does Aut(P, ;). Hence P, is vertex transitive. Lemma 4.2.6(3)

also shows that Ant(P,,) # 0, and thus P, is self-complementary. i
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It should be noted that Lemma 4.2.7 was first proved in 1985 for the cases with
k =2, r =1 by Rao [27]. In 1992, Kocay [19] proved it for the cases with k = 3,
r =1, and in 2007, Potocnik and Sajna [24] proved it for all & when r = 1.

Construction 4.2.4 and Lemma 4.2.7 together prove the partial converse to The-
orem 4.1.1 which is stated in Theorem 4.2.1, and is due to Potoénik and Sajna [24].

We can generalize Construction 4.2.4 to construct vertex transitive self-com-
plementary k-hypergraphs of order n for all integers n = 1 (mod 2*') when ¢ =
max{m) : 1 < m < k}, which implies that the converse of Theorem 4.1.1 is true in

general.

Construction 4.2.8 Generalized Paley k-uniform hypergraph

Let k be an integer, k£ > 2, and let n be a positive integer such that
p"® =1 (mod 2°!)  for every prime p,

where ¢ is the largest positive integer such that 2¢ divides a positive integer m with
m < k. Let n = p{"p5?---pi" be the unique prime factorization of n, where p; is
prime, o; > 1 and p; < py < ... <p. Foreachie€ {1,2 ...t} let ¢; = p*, let r; be
a divisor of the integer (¢; — 1)/2°", and let r = (ry,79,...,7¢). Let F,, denote the
field of order ¢;.
Let
V=F, xF, x...xF, , xF,.

Define a mapping ¢ : V®) — Z, by

0, if {[L’lj,l'gj,...,l‘kj} S E(qu,m,rj)}7

where j = min{i : 1 <i <t [{zy, 22,..., 7} > 1}
C{z1, 22,13 }) =

and m = |[{x1;, 25, ..., Tp; }|-

1, otherwise.
\
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Now define X,, 1., to be the k-hypergraph with vertex set V' and edge set

E={{z1,20,..., 21} € VO : C({x1,29,...,21}) = 0}

Note that when ¢t = 1 and n = ¢; = p}* is a prime power congruent to 1 modulo
2¢+1 ) the k-hypergraph X, ;. of Construction 4.2.8 is the same as the k-hypergraph
P, k.- given by Construction 4.2.4.

Lemma 4.2.9 The k-hypergraph X, ., defined in Construction 4.2.8 is vertex tran-

sitive and self-complementary.

Proof: Since p"® = 1 (mod 2“!) for every prime p, it follows that for each i,
we have ¢; = 1 (mod 2°1), and hence ¢; = 1 (mod 2/*1) for all j < ¢. Now by
definition, ¢ = max{(,, : 1 < m < k} where {,, = max{m(),(m — 1)2)}. Hence
gi =1 (mod 2F1) form =2,3,...,k, and so P,, ,,, is well-defined fori = 1,2,...,¢
and m = 2,3, ..., k. Thus the edges of X,, ;. , are well-defined.

Let I} denote the (cyclic) multiplicative group of non-zero elements in F,,, and

*

7> and an

let w; be a generator of F; . For each i € {1,2...,t}, an element a € F
element b € I, let a; o denote the permutation o, of Fy, defined on page 63. Then
by Lemma 4.2.6(3), a; i o € Ant(Fy, m,r,) for m =2,3,... k, so it follows from the

definition of X, x, that
041,w’1”1 0 X oo X at,w:t,O S Ant(ka,r).

Hence X,, 1, is self-complementary.

To see that X, i, is vertex transitive, it suffices to show that an automorphism
can map the vertex 0 = (0,0,...,0) to any other vertex. For i = 1,2,...,¢ and
for any z; € F,,, the bijection «;;,, maps 0 to z;. Moreover, Lemma 4.2.6(2)

implies that «; 1, is an automorphism of Py, ., ., for m = 2,3,..., k. Now let
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X = (21, %a,...,7¢) € V. It follows from the definition of X, j, that ax = a114, X
Q2159 X *° X Qg1 € Aut(Xn,k,,,). Since ay, maps 0 to x and x was an arbitrary
element of V', it follows that Aut(X,, ;) acts transitively on V', and so X,, x, is vertex

transitive. |

Theorem 4.2.10 Let ¢ be a positive integer, let k = 2° or k = 2° + 1, and let
n =1 (mod 2Y). There exists a vertex transitive self-complementary k-hypergraph

of order n if and only if
p"® =1 (mod 2°)  for every prime p. (4.2.9)

Proof: The necessity of condition (4.2.9) follows directly from Theorem 4.1.1. Since
k=2 or k = 2 + 1, for any integer m such that 1 < m < k, ¢ is greater than or
equal to the largest integer i such that 2¢ divides m. Thus k, ¢, and n satisfy the
hypotheses of Construction 4.2.8, and so the sufficiency of condition (4.2.9) follows

from Lemma 4.2.9. |

4.3 Open problems

In [24], Potoénik and Sajna proposed the following problem for vertex transitive self-

complementary uniform hypergraphs:

Problem 4.3.1 For a given integer k > 2, determine the set My of all integers n

for which there exists a vertex transitive self-complementary k-hypergraph of order n.

(Note that the set My, is a subset of the set £ ; of Problem 3.2.8 for all £ > 2. Hence
any partial solution to Problem 4.3.1 provides a partial solution to Problem 3.2.8 for

t = 1, but not conversely.)
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Theorem 4.2.2 gives the solution to Problem 4.3.1 when k = 2, and it gives all
odd integers in M3. Theorem 4.2.3 and Theorem 4.2.10 give some subsets of M}, for
k = 2% and k = 2° + 1. However, Problem 4.3.1 remains mainly unanswered, and the
problem seems to have no simple solution. In [24], Poto¢nik and Sajna suggest the
following more feasible subproblem.

The first k& for which Problem 4.3.1 remains unsolved is k = 3. Theorem 4.2.2(2)
gives a solution for all odd orders n. For even orders, Theorem 3.1.4 implies that
if 2m € Mg, then m is odd. Moreover, Theorem 4.2.3(2) implies that 2m € M;j
for every Muzychuk integer m, but it also implies that (¢ + 1)m € Mj for every
Muzychuk integer m and every prime power ¢ congruent to 1 modulo 4. Hence there
do exist non-Muzychuk integers m such that 2m € M;. What form can such integers

m take? Potocnik and Sajna posed the following problem.

Problem 4.3.2 Find all odd non-Muzychuk integers m such that there exists a vertex

transitive self-complementary 3-hypergraph of order 2m.

One natural first step for solving Problem 4.3.2 is to determine the primes p
for which 2p € Mj3. To do this, it would be useful to know something about the
structure of a vertex transitive self-complementary k-hypergraph of prime order. To
that end, in Chapter 5 we use group-theoretic results due to Burnside and Zassenhaus
to determine the automorphisms and antimorphisms of these objects. Then we use

this information to generate all such hypergraphs under certain conditions.



Chapter 5

Transitive self~-complementary

hypergraphs of prime order

In this chapter, we determine the automorphisms and antimorphisms of the vertex
transitive self-complementary k-hypergraphs of prime order p in the case where p =
1 (mod 21) and k = 2 or k = 2¢ + 1, and we present an algorithm for generating
all of these structures. As a consequence, we obtain a bound on the number of
pairwise non-isomorphic vertex transitive self-complementary graphs of prime order

p=1 (mod 4).

5.1 Preliminaries - some group theory

In this section, we introduce some notation, and a couple of preliminary group-
theoretic results.

For a prime p, let I} denote the multiplicative group of units of the finite field
F, of order p. Given a € F; and b € F, define the mapping T, : F, — F, by
Top : v — ax+b. One can show that T, is a permutation of F,, and that {T,; : a €

¥, b€ F,} is a group, called the affine linear group of permutations acting on I,

72
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This group will be denoted by AGL;(p).

If H is a subgroup of a group G, we will denote this by H < G. Two permutation
groups G < Sym(Q)) and H < Sym(II) are equivalent if there exist bijections av : Q —
IT and B : G — H such that

giv—w = ¢° 0% wl,

for all g € G and all v, w € Q, and we denote this by G = H. A permutation group
G acting on a finite set €2 is sharply transitive if for any two points v, w € 2, there
is exactly one permutation g € G such that v9 = w. The group G is sharply doubly
transitive if G is sharply transitive in its action on ordered pairs of distinct elements
from €.

The following two theorems due to Burnside [35] and Zassenhaus [38] will be
used to restrict the automorphism group of a vertex transitive k-hypergraph of prime

order.

Theorem 5.1.1 [35] If G is a transitive permutation group acting on a prime number

p of elements, then either G is doubly transitive or
GE{Tmb:aeHgIF;, beF,}.

Theorem 5.1.2 [38, 11] A sharply doubly transitive permutation group of prime

degree p is equivalent as a permutation group to AGL1(p).

We will also require the following useful and well-known counting tool, called the

orbit-stabilizer lemma.

Lemma 5.1.3 [35] Let G be a permutation group acting on 'V and let x be a point
i V. Then
|G| = |G 2],



5.2. A characterization 74

5.2 A characterization

Now we are ready to determine the automorphisms and antimorphisms of the vertex

transitive self-complementary k-hypergraphs of prime order p in the cases where p =

1 (mod 24" and k = 2% or k = 2¢ + 1.

Lemma 5.2.1 Let ¢ be a positive integer, and suppose that k = 2° or k =2+ 1. If
X is a vertex transitive self-complementary k-hypergraph of prime order p =1 (mod
2F1) then Ant(X) U Aut(X) is equivalent as a permutation group to a subgroup of
AGLy(p). That is

Ant(X) U Aut(X) = {Top:a € G <TF, , beF,}.

Proof: Since X is vertex transitive, it follows that Aut(X) and Ant(X) U Aut(X)
are both transitive permutation groups acting on a prime number of elements. Since
p =1 (mod 2°1), Theorem 3.1.4 implies that X is not doubly transitive, and so by

Burnside’s Theorem,
Aut(X)={T,p:a € HSTF,, beF,} (5.2.1)

for some subgroup H of ;. Now since AGL,(p) is doubly transitive and X is not
doubly transitive, we have Aut(X) # AGL,(p). Hence H is a proper subgroup of I in
Equation (5.2.1), and so |H| < (p—1)/2. Thus |Aut(X)| = p|H| < p(p—1)/2. Since
Aut(X) is an index-2 subgroup of Aut(X) U Ant(X), we have |[Aut(X) U Ant(X)| =
2[Aut(X)] < p(p —1).

If Aut(X) U Ant(X) is not doubly transitive, then the result follows from Burn-
side’s Theorem 5.1.1. On the other hand, if Aut(X) U Ant(X) is doubly transitive,
then certainly |[Aut(X)UAnt(X)| > p(p—1), which implies that |Aut(X)UAnt(X)| =
p(p —1). Hence Aut(X) U Ant(X) must be sharply doubly transitive, and so in this

case the result follows from Zassenhaus’ Theorem 5.1.2. |
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In the next lemma, we completely determine the set of automorphisms and anti-

morphisms of the Paley k-hypergraphs of Construction 4.2.4 which have prime order.

Lemma 5.2.2 Let { be a positive integer, and suppose that k = 2° or k = 2°+1. Let
p be a prime such that p = 1 (mod 271, Let r be a divisor of (p — 1)/2, and let
X = P, be the Paley k-hypergraph defined in Construction 4.2.4. Let S be the set
of elements s € {1,2,...,p — 1} such that s(’;) is a multiple of ¢ = ged(p — 1,7“(];)),
and let s = ged{s : s € S}. Then

Aut(X) ={T,p:a € (W) <F;, beF,}

and

Ant(X)U Aut(X) = {Top:a € (") <F} , beF,},
where w is a generator of Fy.

Proof: Since T, is equal to the permutation oy, defined on page 63, Lemma 4.2.6(4)

guarantees that
{Top :a €Ty b€ Fy} N (Aut(X) UAnt(X)) = (1,0, T11)-
On the other hand, Lemma 5.2.1 implies that
Ant(X)UAut(X) ={Top:a € GSF,, beF,}
for some subgroup G of F;. We conclude that
Ant(X) UAut(X) = {Tp:a € (W) <F:, beF,}.

Since Aut(X) is an index-2 subgroup of Ant(X) U Aut(X), it follows that

Aut(X) ={T,p:a € (W) <F,, beF,}
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Theorem 5.2.3

Suppose X = (V, E) is a vertex-transitive self-complementary k-hypergraph of prime
order p, where k = 2° or k = 24+ 1 and p = 1 (mod 2°"1). Let w be a generator
of F,, and let r = p(p — 1)/|Aut(X) U Ant(X)|. Then X is isomorphic to a k-
hypergraph Y with vertex set ¥, for which Aut(Y') = (T2r o, T11) < Aut(P,y,) and
Ant(Y)U Aut(Y) = (Tir o, T11) < Ant(Ppp,) U Aut(Pyy,). Consequently, Y is in

the 0-switching class of P,y for every permutation 6 € {Trm : m odd,b € F,}.
Proof: By Lemma 5.2.1,
Ant(X)U Aut(X) ={Top:a € G ST, beF,},
and Aut(X) is an index-2 subgroup of this group, so
Aut(X) ={Top:a€ K <F, , beF,},

where K is an index-2 subgroup of G. Thus there is a bijection ¢ : V' — F, such that
Y = (p(V), p(F)) satisfies

Ant(Y)U Aut(Y) = {Top:a € G <F, , beF,},
and
Aut(Y) ={Top:a € K <F, , beF,}.
Now |Ant(Y) U Aut(Y')] is even, and its order divides p(p — 1). Since

_ p(p—1) _ plp—1)
T [Ant(Y) U Aut(Y)] _ [Ant(X) U Aut(X))|

and w is a generator of Iy, it follows that G' = (w") and K = (w*). If 7 is a divisor
of %, then P,;, exists and Aut(Y) = (T2, T11) < Aut(Ppj,) and Ant(Y) U
Aut(Y) = (Tro,Th1) < Ant(P,k,) U Aut(Py,). Consequently, Y is in the 6-
switching class of P, ., for every 0 € (Tir0,T11) \ (To2r 0, T11) = {Tirmp : m odd, b €
F,}.
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It remains to show that r = % is a divisor of (p — 1)/2"!. First we
will show that both of the integers p and 2¢ divide |Aut(Y)|. We have Aut(Y) =
{T.p - a € K <TF,, be F,}, which contains the subgroup {71, : b € F,} of
order p, and so p divides |Aut(Y')|. Now let € Ant(Y'). Then 6 has even order in
Ant(Y)UAut(Y), so 0] = 27s for some positive integer j and some odd positive integer
s. Now 6° € Ant(Y) and 6* has order 2/, so Lemma 2.2.8 implies that 6° has exactly
one fixed point, and all other orbits of * have length divisible by 2¢+!. Hence the order
of the antimorphism 6° is divisible by 24!, and so |Aut(Y) U Ant(Y)| = 2| Aut(Y)] is
divisible by 2¢F1. Tt follows that 2¢ divides |Aut(Y)].

Now observe that

B p(p—1) B pp—1) _ plp—1)2tH!
T TAu(X) U Ani(X)]  JAw(Y) U Ani(Y)] 2] Aat(Y )21
—1 Aut(Y
— erT —r (%) . (5.2.2)

Since |Aut(Y')] is divisible by the odd prime p, and |Aut(Y)| is also divisible by 2¢, it

follows that % is an integer. Hence Equation (5.2.2) implies that r divides the
integer ge%ll. This completes the proof. i

5.3 Generating transitive k-hypergraphs

In this section, we present an algorithm for generating all vertex transitive self-com-
plementary k-hypergraphs of prime order p = 1 (mod 2°*!) in the case where k = 2°
or k=2+1.

Algorithm 5.3.1
Let ¢ be a positive integer, and suppose that k = 2¢ or k = 2° + 1. Let p be a prime
such that p =1 (mod 2°7"). Let w be a generator of F.
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1. Choose a divisor r of (p—1)/2"1 let P, be the Paley k-hypergraph of order
p, and let 0 =T, o.

(a) Take an arbitrary uncoloured element A of F". In Steps (i), (i) and (iii)
below, we will find the orbit O = A{Twr.0 711 of the group (T, T11) on

F;,k) which contains A.

(i) Create a sequence of elements of IF,(gk)

A, A0 AP AT A0 (5.3.1)

Y

If A€ E(P,,), then colour the elements of the form A% red and
those of the form A’ blue. If A ¢ E(P,,), then colour the
elements of the form A% blue and those of the form A”"" red.

(ii) Repeat Step 1(a)(i) but replace A with an element of A{TwroTi1)
which is uncoloured.

(iii) Repeat Step 1(a)(ii) until all elements of ATw".0T1.1) have been coloured.

(b) Repeat Step 1(a) until all of the elements of F'¥) have been coloured.

(c) Let m be the number of orbits of the group (7, o,71,1) on IE}(;k) created

in Steps 1(a) and 1(b), and choose an ordering Oy, Os,...,O,, of these

orbits.

(i) Choose a vector v € Z3', and let X be the k-hypergraph with vertex
set IF, and edge set E/, where an edge e € O; is in E

if and only if e is red and v; = 1, or e is blue and v; = 0.

(ii) Repeat step 2(c)(i) for all vectors v € ZJ".
2. Repeat step 1 for all divisors 7 of (p —1)/2¢L.

Lemma 5.3.2 The colouring of the elements of F,(,k) in Algorithm 5.3.1 is well de-
fined.
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Proof: Lemma 4.2.6(3) guarantees that § = T},r ¢ is an antimorphism of the Paley k-
hypergraph P, ; », and so 0 is a k-complementing permutation. Thus Proposition 2.1.1
guarantees that no element of the sequence (5.3.1) in Step 1(a)(i) is coloured both
red and blue. Also, since the orbits of § partition the elements of V) no k-subset
of V' can occur in more than one sequence (5.3.1) created in Step 1(a)(i). Hence no

element of F ;(;k) is coloured both red and blue in steps 1(a) and 1(b). |

Theorem 5.3.3 Let { be a positive integer, and suppose that k = 2° or k = 2 + 1.
Let p be a prime such that p = 1 (mod 2°*1). Let X be a k-hypergraph of order p.
Then X 1s vertex transitive and self-complementary iof and only if X is isomorphic to

a k-hypergraph generated by Algorithm 5.3.1.

Proof: (=) Suppose that X is a vertex transitive self-complementary k-hypergraph
of order p. By Theorem 5.2.3, X is isomorphic to a k-hypergraph Y with vertex set I,
for which Aut(Y') = (T},2r 0, T11) < Aut(Pp ) and Ant(Y)UAut(Y) = (Tir o, Th1) <
Ant(P, ) U Aut(P, ), where r = p(p — 1) /| Aut(X) U Ant(X)|. We will obtain Y
from P, , using Algorithm 5.3.1.

Certainly P, ., is generated by Algorithm 5.3.1, since P, = X]. Now we will
show how Y can be generated by Algorithm 5.3.1 from P, ;,. By Theorem 5.2.3, Y is
in the #-switching class of P, for every permutation 6 € {T,,rmp : m odd,b € F,}.
In particular, Y is T, o-switching equivalent to P, ,. That is, ¥ can be obtained
from P,, by changing edges to nonedges, and vice versa, in some collection S of
orbits of T, on F*¥. Moreover, since Aut(Y) = (T,2r o, T1 1), the collection S must

)

also be equal to a union of orbits of (T},2r,77,1) on ]Fﬁ,k . Hence S is a union of or-

bits of (T o, Twer 0, Tr1) = (Tr o, Ty1) on FY. This implies that Y can be obtained
from P, ., by changing edges to nonedges, and vice versa, in a subset S of the orbits

01,0,,...,0,, given by Algorithm 5.3.1. Let v € Z' be the vector such that v; =1
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if and only if O; € §. Then Y = X7 . Since X =Y, we have X = X7, and so X
is isomorphic to a k-hypergraph generated by Algorithm 5.3.1.

(<) Suppose that X is a k-hypergraph of order p that is isomorphic to a k-hy-
pergraph generated by Algorithm 5.3.1. We will show that X is vertex transitive and
self-complementary. Now X = X7 for some divisor 7 of (p—1)/2* and some v € Z1,
where m is the number of orbits of the group (7, ¢,77.1) on ]Fz(,k). The k-hypergraph
X is constructed by choosing either the red or the blue edges from each of the orbits
in {01,0,,...,0,}. Our coloring method in Step 1(a) guarantees that each of the
set of red edges and the set of blue edges in O, constitutes an orbit of (T}2r o, T} 1)
on F¥), for all i € {1,2,...,m}. This implies that (T2ro,711) < Aut(X]). Since
(Th1) < (T,2r0,T11), and (T7,) acts transitively on F,, we conclude that Aut(X))
acts transitively on V(X) = F,, and so X] is vertex transitive. Our coloring method
in Step 1(a) also guarantees that T, ¢ maps red edges onto blue edges, and vice versa,
in the orbit O;, for all i € {1,2,...,m}. This implies that T,,r o € Ant(X]), and so
X is self-complementary.

Hence X is a vertex transitive self-complementary k-hypergraph of order p, and

since X & X" sois X. |

When k =2 or k = 3, Theorem 3.1.4 guarantees that for every vertex transitive
self-complementary k-hypergraph of prime order p, we must have p = 1 (mod 4).
Hence Algorithm 5.3.1 generates every vertex transitive self-complementary graph
and 3-hypergraph of prime order. In addition, for the case k = 2 it is possible to count
the orbits of the group (T, o,71,1) on IE‘](Jk), and consequently we obtain a bound on
the number of pairwise non-isomorphic vertex transitive self-complementary graphs

of order p.
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Corollary 5.3.4 For any prime p =1 (mod 4), there are at most

Z 2r—1

=
pairwise non-isomorphic vertex transitive self-complementary graphs of order p.

Proof: Let r be a divisor of (p—1)/4. Then ged(p—1,r) = r. Let w be a generator of
F,. Foreachi=0,1,...,2r—1,let & = {e € F) : VM(e) € w'(w?)}. We will prove
that each of the orbits of the group (7, o, 7% 1) on IF}(,Z) has the form & UE; ., for some
i=0,1,...,7 — 1. For a given divisor r of (p — 1)/4, Algorithm 5.3.1 generates at
most 2™~ ! pairwise non-isomorphic graphs X with Aut(X) U Ant(X) = (T, o, T11),
where m is the number of orbits of (T,-,77,1) on IFZ(,Q). Finding these orbits explicitly
will lead us to conclude that m = r for each divisor r of (p — 1)/4, and so the result
will follow.

First we show that each element of {T},rm; : m odd, b € F,} maps edges of & to
edges of &;4,, where addition of subscripts is addition modulo 2r. Let 8 = T ,»m  for
some odd integer m and some b € F,,. Now if {z,y} € &, then VM ({z,y}) € w"(w?*").
Hence VM ({z,y}?) = 2% — ¢/ = w™(z —y) = w™VM({z,y}) € w(w?). Thus
{2,y}° € &

Now let G = (T2 ,T11). We show that each element of G maps edges of &
to edges of &. Let @ € G. Let a = T,2rm, for some integer m and some b € F,,.
Now if {z,y} € &, then VM ({z,y}) € w'(w?"). Hence VM ({z,y}*) = 2% — y* =
wrm(z —y) = W'V M({z,y}) € wH{w?). Thus {z,y}* € &. Hence £ = &;, for all
a €.

Hence G = (T,2r o, T1,1) maps edges of & onto edges of &;, and {1}y, : modd, b €
F,} maps edges of &; to edges of &;,. This implies that each orbit of (T},r,711) on
]FIE,Q) is contained in & U &; ., for some i € {0,1,...,r —1}.

Next we prove that (T},- o, 11 1) acts transitively on &UE;.,, foralli =0,1,...,r—
1. It suffices to show that G = (T}2ro,7T11) acts transitively on the set of edges &;,
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forall i =0,1,...,2r — 1. Since G = (T,2ro,T1,1), we have |G| = p(p — 1)/2r. Now
fix {z,y} € IF;(?). Recall that the group AGL;(p) acting on F, is sharply doubly
transitive. Since G < AGLy(p), it follows that at most two permutations in G fix

{z,y}. Hence by the orbit-stabilizer Lemma 5.1.3, we obtain

{2y} = 1GI/1G | = |GI/2 = p(p — 1) /4r. (5.3.2)

Also, for integers ¢ and j such that 0 <i,j < 2r — 1, we have |&;| = |&;|. This implies
that each of the edge sets &; has size

&l = [F|/2r = p(p — 1) /4r. (5.3.3)
Now (5.3.2) and (5.3.3) together imply that
{z,y}°| > |&|, forallie {0,1,...,2r —1}. (5.3.4)

Since each orbit of G on FY” is contained in & for some 4, and (5.3.4) implies that
each orbit of G on IF;,Q) has cardinality at least |&;| for all 4, it follows that each orbit
of G on IF,(f) is equal &; for some i. Hence G acts transitively on the set of edges &;,
forall i =0,1,...,2r — 1. This implies that (T},r,711) acts transitively on & U &4,
forall:=0,1,...,r — 1.

Since each orbit of (T},r¢,T7,1) is contained in & U &4, for some i, the fact that
(T 0, T1.1) acts transitively on & U&; ., implies that each orbit of (T} o, 7 1) on IFI(DQ)
is equal to & U &y, for some ¢ = 0,1,...,7 — 1. There are exactly r such orbits,
and so m = r in step 1(c) of Algorithm 5.3.1. Thus for each divisor r of (p — 1)/4,
Algorithm 5.3.1 generates exactly |Zj| = 2" vertex transitive self-complementary
graphs of order p. Now every graph generated by the algorithm is isomorphic to its

complement, which is also generated by the algorithm. It follows that there are at

most

Z gr—1

1
|2
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pairwise non- isomorphic vertex transitive self-complementary graphs of order p. |}

5.4 Open problems

In this section, the author proposes two open problems.

When neither k£ nor k—1 is a power of 2, not much is known about the structure of
vertex transitive k-uniform hypergraphs of prime order p. However, using Burnside’s
Theorem, one may solve the following problem by examining the structure of doubly

transitive permutation groups.

Problem 5.4.1 Letp be prime, and let k be a positive integer, k < p—1. Characterize

the structure of vertex transitive self-complementary k-uniform hypergraphs of order
.

In [9], Dobson proved the following analogue to Burnside’s characterization of

transitive groups of prime degree for transitive groups of prime power degree.

Theorem 5.4.2 [9] A transitive group of odd prime-power degree such that every
minimal transitive subgroup is cyclic is either doubly transitive (and hence known) or

contains a normal Sylow p-subgroup.

One may use Dobson’s theorem to prove an analogue to Theorem 5.2.3 for uni-

form hypergraphs of prime power order. The author poses the following problem.

Problem 5.4.3 Characterize the structure of the vertex transitive self-complemen-

tary k-uniform hypergraphs of prime power order.

In the case where n = p” = 1 (mod 2¢™!) for the largest element £ in the support
of the binary representation of k£, Theorem 3.1.4 implies that a self-complementary

k-hypergraph X of order n cannot be 2-subset-regular, and hence cannot be doubly
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transitive. Therefore, if the automorphism group of X contains a cycle of length p”,
then it contains a normal Sylow p-subgroup. Examining the structure of such groups

may lead to a partial solution to Problem 5.4.3.



Part 11

Self-complementary nonuniform

hypergraphs
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Chapter 6

Introduction

6.1 Definitions

For a positive integer n > 2 and a nonempty subset K of {1,2,...,n — 1}, a K-hy-
pergraph (V, E) of order n is a hypergraph with vertex set V' and edge set

E = U E., where B, CVW® for all k € K.

The complement X© of the K-hypergraph X = (V,E) is the K-hypergraph with
vertex set V(XY) = V and edge set E(XY) = U, V¥ \ E. An isomorphism
between two K-hypergraphs X = (V, FE) and Y = (W, F') is a bijection from V to W
which induces a bijection from F to F. If such a bijection exists, we say that X and
Y are isomorphic. The K-hypergraph X is called self-complementary if X and X°¢
are isomorphic. An isomorphism from a self-complementary K-hypergraph X to its
complement X is called an antimorphism of X, and as usual we denote the set of
antimorphisms of X by Ant(X). For each k in the rank set K of a K-hypergraph X,
let X} denote the subhypergraph of X induced by the edges of X of rank k. Note that
if X is self-complementary, then the k-hypergraph X} is self-complementary for all

k € K. Since any bijection maps edges of size k onto edges of size k, a permutation

86
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f is an antimorphism of X if and only if § is an antimorphism of X}, for all k € K.
Thus Ant(X) = (o Ant(X}). Hence we have the following characterization of

self-complementary K-hypergraphs.

Proposition 6.1.1 A K-hypergraph X = (V| E) is self-complementary if and only
if both of the following conditions hold.

(1) The subhypergraph Xy, is a self-complementary k-hypergraph for all k € K.

(2) The self-complementary subhypergraphs Xy, for all k € K, share a common
antimorphism 0. That is, [\,cx Ant(Xy) # 0.

A K-hypergraph X = (V| E) is t-subset-regular if, for all k € K, the subhyper-
graph X; = (V, E;) induced by the edges of size k is t-subset-regular. An automor-
phism of a K-hypergraph X is an isomorphism from X to X, and as usual we denote
the group of automorphisms of a K-hypergraph X by Aut(X). A K-hypergraph
X = (V, E) is t-fold-transitive, or simply t-transitive, if Aut(X) acts transitively on
the set of ordered t-tuples of pairwise distinct elements of V. A 1-transitive K-hy-
pergraph is called vertex transitive, and a 2-transitive K-hypergraph is called doubly
transitive. In the language of design theory, the t-subset-regular self-complementary
K-hypergraphs correspond to large sets of two isomorphic ¢t-wise balanced designs, or

t-partitions, in which the block sizes lie in the set K.

6.2 History and layout of part II

Szymanski first introduced the notion of a self-complementary (non-uniform) hyper-
graph of order n in 2006 [31]. He defined it to be a self-complementary K-hypergraph
for K ={1,2,...,n—1}.

The following theorem provides necessary and sufficient conditions on the order

of a self-complementary K-hypergraph for K = {1,2,...,n—1}. The result was first
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conjectured by Szymanski [31], who verified the result by computer for n < 1000.
The theorem was then proved by Zwonek [39].

Theorem 6.2.1 [39] Let K = {1,2,...,n — 1}. There exists a self-complementary

K -hypergraph of order n if and only if n = 2° for some positive integer (.

Actually, Zwonek proved the following stronger result.

Theorem 6.2.2 [39]

1. Let K ={1,2,...,n—1}. If X is a self-complementary K -hypergraph of order

n, then n = 2 for some positive integer {.

2. If [V| = 2°, then a permutation 0 € Sym(V) is a k-complementing permutation
for all k € {1,2,...,2° — 1} if and only if 0 is a cycle of length 2°.

Observe that a self-complementary k-hypergraph is a self-complementary K-hy-
pergraph for K = {k}. Hence the concept of a self-complementary K-hypergraph is
a generalization of the previous concepts of self-complementary k-hypergraphs and
Szymanski’s self-complementary non-uniform hypergraphs, as these structures are the
two extreme cases of self-complementary K-hypergraphs.

In Part II of the thesis, we will examine the possible orders of self-complemen-
tary K-hypergraphs for various sets of positive integers K. The results in Part II
rely on the necessary and sufficient conditions on the orders of self-complementary
k-hypergraphs obtained in Part I of the thesis.

Part II is broken up into three chapters. In Chapter 7, we derive some necessary
conditions on the order of self-complementary K-hypergraphs, and show that these
conditions are sufficient in certain cases. In Chapters 8 and 9, we give a similar
analysis of the orders of t-subset-regular self-complementary K-hypergraphs and t-

fold-transitive self-complementary K-hypergraphs, respectively.



Chapter 7

Self-complementary K-hypergraphs

7.1 Necessary conditions on order

In this section, we obtain some necessary conditions on the order of a self-comple-

mentary K-hypergraph for certain sets K of positive integers.

Theorem 7.1.1 Let n > 2 be an integer, and let K C {1,2,...,n — 1}, K # (.

Suppose that there exists a self-complementary K-hypergraph with n vertices.

(1) If K contains a nonempty subset
L={2"+1,2"41,... 2"+ 1}
for some integers £,r with £ > 1 and r > 0, then n is even or
e+ € {0,1,...,2°}
(2) If K contains a nonempty subset
M = {2°2F1 2t
for some integers £,r with £ > 1 and r > 0, then

Nge+r+1] € {O, 1,..., 2t — 1}

89
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Proof: We prove the results by induction on r.

When r = 0, both results (1) and (2) follow directly from Corollary 2.3.3. Now

suppose that r is a positive integer, and assume that both results (1) and (2) hold

for r — 1. Suppose that X is a self-complementary K-hypergraph with n vertices.

(1)

If K contains a nonempty subset
L={24+1,2%"4+1,... 2% +1}

for some positive integer ¢, then the self-complementary subhypergraph of X
induced by edges with sizes in L = L\ {27 + 1} has order n and satisfies the

hypothesis of condition (1) for » — 1. Hence by the induction hypothesis,
n is even or nper-n+1y € {0,1,... ;20 (7.1.1)

Also, the subhypergraph of X induced by the edges of size 27" + 1 is a self-
complementary (2" + 1)-hypergraph of order n, and so Corollary 2.3.3 implies
that

n is even or nperri1y € {0,1,..., 27}, (7.1.2)

If n is not even, then (7.1.2) guarantees that npeiri1) < 26+7 which implies that
Npge+r+1] = Nppe+s), and so (7.1.2) guarantees that npeeri1 € {0,1,.. ., 2¢}. Hence
either n is even or nper+1 € {0,1,...,2}, and so (1) holds for r. Thus by the

principle of mathematical induction, (1) holds for all » > 0.

If K contains a nonempty subset M = {2¢ 2¢+1 . 247} for some positive in-
teger £, then the self-complementary subhypergraph of X induced by the edges
with sizes in M = M\ {27} has order n and satisfies the hypothesis of condition

(2) for r — 1. Hence by the induction hypothesis,

npero-viy € {0,1,...,2° = 1} (7.1.3)
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Also, the subhypergraph of X induced by the edges of size 2t is a self-comple-
mentary 2 -hypergraph of order n, and so Corollary 2.3.3 implies that

e+ € {0,1,..., 277 — 1} (7.1.4)

Now conditions (7.1.3) and (7.1.4) together imply that the result in (2) holds for
r. Thus by the principle of mathematical induction, (2) holds for all » > 0. i

7.2 Sufficient conditions on order

In this section, we use the characterization of the lengths of the orbits of a k-com-
plementing permutation in Theorem 2.2.5 to obtain some sufficient conditions on the
order of self-complementary K-hypergraphs, for various sets K.

In the first theorem, we show that the necessary conditions in Theorem 7.1.1 are

also sufficient in the cases where L = K or M = K.

Theorem 7.2.1 Let n > 2 be an integer, and let L and M be nonempty subsets of

{1,2,...,n—1}.

(1) If L= {2 +1,2 41 ... 25" 11} for some integers {,r with £ > 1 and r > 0,
then there exists a self-complementary L-hypergraph of order n whenever n is

even or npgeri1) € {0,1,. .., 20}

(2) If M = {22501 . 2557} for some integers (,r with £ > 1 and v > 0, then
there erists a self-complementary M-hypergraph of order n whenever njgetr1) €

{0,1,...,2° -1}
Proof: It suffices to show the following:

(i) If n is even, then there exists a permutation in Sym(n) that is k-complementing

for all k € L.
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(i)

If Njge+r1) € {O, 1,..., 26}, then

(a) there exists a permutation in Sym(n) that is k-complementing for all k € L,

and

(b) if nperr+a) < 2°, then there exists a permutation in Sym(n) that is k-com-

plementing for all k£ € M.

Suppose that n is even, say n = 2m for a positive integer m, and let € Sym(n)
such that 6 has m orbits of length 2. Fix k£ € L, and let b be the binary
representation of k. We will use Theorem 2.2.5 to show that 6 is a k-comple-
menting permutation. Let V' = {1,2,...,n}, let A =0 and let B = V. Then
ANB =0, AUB =V, and A and B are both equal to unions of orbits of 6.
Moreover, since k € L, we have 0 € supp(b). Now |A| = 0 < kjpo+1), and it is
vacuously true that every cycle of 0|4 has length 2" for some integer r < 0, so
condition (I) of Theorem 2.2.5 holds for A with ¢ = 0. Also, every cycle of 0|
has length 2 = 2!, and so as 1 > 0, condition (IT) of Theorem 2.2.5 holds for
B with ¢ = 0. Hence Theorem 2.2.5 guarantees that 6 is a k-complementing
permutation, and since k was an arbitrary element of L, 0 is a k-complementing

permutation for all k£ € L. Hence (i) holds.

Now suppose that n = j (mod 2*"*!) for some j € {0,1,...,2}, say n =
m2%47+L 4+ j. Let 0 € Sym(n) such that o has m orbits of length 2+"*! and j
fixed points. Fix k € L U M, and let b be the binary representation of k. Now
k=2 or k = 2% 4+ 1 for some i € {0,1,...,r}, and so £ + i € supp(b).
To prove (a) and (b), we will use Theorem 2.2.5 to show that o is a k-comple-
menting permutation for k£ = 2+ 4 1, and for & = 2+ 4 1 when j < 2°. Let
V ={1,2,...,n}, let A be the set of j fixed points of o, and let B be the set
of elements of V which lie in a cycle of ¢ of length 2°"*!. Then A and B are

both equal to unions of orbits of o, and AU B = V. Since 277! > 1, we also
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have AN B = 0.

First we will show that conditions (I) of Theorem 2.2.5 holds for ¢ with the set
A and the element ¢ + i € supp(b), under the conditions of (a) and (b).

(a) k€ L andj <2° Then k =2 +1. In thiscase |[A| = j <20 <28 +1 =
Ket+it1), and so condition (I) holds for A with the element £ + 4 € supp(b).
(b) k€ M and j < 2. Then k = 2", Hence |A] = j < 2° < 2% = kpeviny,
and so condition (I) holds for A with the element ¢ 4 i € supp(b) in this

case also.

Now observe that, in both cases (a) and (b) above, every cycle of o |5 has length
204741 "and the fact that r > i guarantees that £/+r-+1 > ¢+i. Hence condition
(IT) of Theorem 2.2.5 holds for o with the set B and the element ¢+ € supp(b),
in both cases (a) and (b). Thus Theorem 2.2.5 guarantees that o is a k-comple-
menting permutation in both cases. It follows that (ii)(a) and (ii)(b) both hold.

This completes the proof. i

Let Ny denote the set of positive integers which are sums of consecutive powers

of 2. That is,
Np={1,2,2+1,22224+222 +2+1,23,25 42225 +22 +2 23+ 22 4+ 241,...}.

In the next theorem, we will use Corollary 2.3.4 to obtain necessary conditions on
the order of self-complementary K-hypergraphs in the case where K contains a set
K of consecutive elements from Ny, and we show that these necessary conditions are

sufficient when K = K.

Theorem 7.2.2 Let K be a set of positive integers, let kya.x, = max{k : k € K},

and let n be an integer such that n > kya.x + 1. Suppose that K contains a nonempty
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subset KX of consecutive elements in Ny. Let k* = max{k : k € f(} and let k, =
min{k : k € K} Let b* and b, be the binary representation of k* and k., respectively.
Let 0* and (. denote the largest elements in supp(b*) and supp(b), respectively.

(1) If there exists a self-complementary K -hypergraph of order n, then npge+1y < ki

(2) If K = K, then there ezists a self-complementary K -hypergraph of order n if and

only if njgee1) < k.
Proof:

(1) Suppose that there exists a self-complementary K-hypergraph X of order n. We
will show that njye-41) < ky by induction on £* — £,. Note that by the definition

of Ny, since k* > k,, we have (* > /,.

Base Step: If * — {, =0, then

o o o
K = {22 o2y 21}
i=c i=c—1 i=c—d

for some nonnegative integers ¢, d such that 0 < ¢ —d < ¢ < ¢*. Now for each
ke K , the self-complementary subhypergraph X; of X induced by the edges
with size k has order n, and hence Corollary 2.3.4 implies that nje1) < k for all

k € K. Thus Npger+1) < Min{k : k € K} = k,, as required.

Induction Step: Let r be an integer, r > 1.

o Induction Hypothesis: If K contains a nonempty subset M of consecutive
clements in Ny, m* = max{k : k € M}, m, = min{k : k € M}, a* and a,
denote the largest elements in the supports of the binary representations of

m* and m,, respectively, and a* — a, = r — 1, then njgar+1) < m..
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Now suppose that ¢* — ¢, = r. Let b, denote the binary representation of a

positive integer k. Let
M ={k e K : max{i : i € supp(by)} = (*},

and let M = K\ M. Let m* = max{k : k € M}, let m, = min{k : k € M} =
ks, and let a* and a, denote the largest elements in the supports of the binary
representations of m* and m,, respectively. Then a* = ¢* — 1 and a, = /., and so
a* —a, = r — 1. Hence by the induction hypothesis, we have Njgar+1] < M. Since

my = k, and a* = £* — 1, this implies that

Now by definition, we have
E*
M = {2”,2” +207 Y 2@}
i=0*—c
for some integer ¢ such that 0 < ¢ < ¢*. Hence 2 € M C K, and so by
Theorem 7.1.1(2) we obtain npe41; < 2¢". But this implies that Npges+1) = Naer].

Putting this together with (7.2.1), we obtain
n[22*+1] < k?*,

as required. |

Suppose that K = K and there exists a self-complementary K-hypergraph of
order n. Then nge+1 < ki by part (1).

Conversely, suppose that K = K , and let n be an integer such that njpeiy < k.
Then n = M2 1+ for a positive integer M and an integer j € {0,1,...,k,—1}.
We will show that there exists a self-complementary K-hypergraph of order n.



7.2. Sufficient conditions on order 96

It suffices to show that there exists a permutation in Sym(n) that is k-comple-

menting for all k € K.

Let 6 € Sym(n) be a permutation whose disjoint cycle decomposition has M cy-
cles of length 2+ and j cycles of length 1 (j fixed points). Let k be an arbitrary
element of K and let b be the binary representation of k. Since K = K , it follows
that k € Ny. Let ¢ = max{i : ¢ € supp(b)}. By definition of ¢*, we have ¢ < (*.
Moreover, by definition of k,, we have j < k, < k, and so j < k. Let A be the
set of fixed points of 0, and let B be the set of points in {1,2,...,n} which lie in
a cycle of § of length 2¢+1. Then certainly AN B = () and AU B = domain(f).
Also, the sets A and B are both equal to unions of orbits of . Moreover, every
cycle of B has length 2°+! and ¢* +1 > ¢+ 1 > /¢, and so 6 satisfies condition
(I) of Theorem 2.2.5. Also, we have that |A| = j < k and every cycle of 0 |4
has length 2°. Hence if ¢ > 0, then 6 satisfies condition (I) of Theorem 2.2.5. On
the other hand, if ¢ = 0, then & = 1, and so the fact that |A| < k implies that
|A] = 0, and hence 0 satisfies condition (I) of Theorem 2.2.5 in this case also.
Thus Theorem 2.2.5 guarantees that € is a k-complementing permutation. Since
k was arbitrary, we conclude that 6 is a k-complementing permutation for every

k € K. Hence there exists a self-complementary K-hypergraph of order n. i



Chapter 8

Regular self-complementary

K-hypergraphs

8.1 Necessary conditions on order

In this section we determine necessary conditions on the order n of a t-subset-regular
self-complementary K-hypergraph for various subsets K of {1,2,...,n — 1}.
Throughout this section, for a positive integer k, let b, denote the binary repre-

sentation of k.

Theorem 8.1.1 Let n > 2 be an integer, let K C {1,2,...,n — 1}, K # ¢, and
let t be an integer such that 1 < t < min{k : k € K}. Suppose that there exists a
t-subset-reqular self-complementary K -hypergraph with n vertices. Then the following

conditions hold:

(1) If K = {k} for somek € {1,2,...,n—1}, then there exists an integer { € supp(by)
such that
Nge+1) € {t, t+1,..., k[26+1] — 1}

(2) K #{1,2,....n—1}.

97
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(8) If K contains a nonempty set

L = {247 2€ +1, 24-&-17 2€+1 +1,..., 2Z+T’ 2€+r + 1} \ S
for some S C {2°,2°" + 1} and some integers {,r with £ > 1 and r > 0, then
Nge+r+1] € {t,t+ 1,..., Lyin — 1},

where Ly, = min{k : k € L}.

(4) Suppose that K contains a nonempty subset K of consecutive elements in Ny. Let

k* = max{k : k € K} and let k, = min{k : k € K}. Let b* and b, be the binary
representation of k* and k., respectively. Let (* and {, denote the largest elements

in supp(b*) and supp(b.), respectively. Then npge+y € {t,t +1,... k. — 1}.

Proof:

(1)

If K = {k} for some k € {1,2,...,n — 1}, then X is a t-subset-regular self-com-
plementary k-hypergraph with n vertices, and so the result follows directly from

Theorem 3.1.4.

Suppose, for the sake of contradiction, that K = {1,2,...,n — 1}. Then the
subhypergraph X;, = (V, E N V®) is a t-subset-regular self-complementary k-
uniform hypergraph for all k£ € {1,...,n — 1}. But then X is a 1-subset-regular
1-hypergraph, which is impossible.

Fix a positive integer £. We prove the result by induction on r.

If r =0, then L = {242 +1}\ S for some S C {2¢2°+ 1}. Since L # ¢
by assumption, it follows that L must be a nonempty subset of {2¢,2¢ + 1}. If
|L| = 1, then X = (V, E}) is a t-subset-regular self-complementary k-hyper-
graph for k = 2¢ or k = 2¢ 4+ 1. Thus in this case the result follows directly
from Corollary 3.1.5. If |L| = 2, then L = {2°,2° + 1}, and so X}, = (V, E}) is a
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self-complementary ¢-subset-regular k-hypergraph for both k = 2¢ and k = 2/ 4 1.
Hence Corollary 3.1.5 implies that

npery € {tt+ 1,20 =1k n{t,t+1,...,2%
= {t,t+1,...,2° -1}

={t,t+1,..., Lyin — 1}.

Hence the result is true for r = 0.

Now suppose that r is a positive integer.

e Induction Hypothesis: If there exists a t-subset-regular self-complemen-

tary K -hypergraph, where K contains a nonempty set
L= {2620 41,2001 oL 1, ottr=1 9ftr=l L 11\ §
for some S C {2¢,26471 + 1}, then
npetr) € {41, ..., Liin — 1},
where Ly, = min{k : k € j)}
Suppose that K contains
Lo={2020 11,2071 251 £ 1, 27 967 111\ §
for some S C {2¢ 24" + 1}. Let
L={2020 41,21 2% 1 . 21 11\ 6.

Then the subhypergraph of X induced by the edges in U, _; I}, is a t-subset-regular
self-complementary f/—hypergraph, and so by the induction hypothesis,

A~

Ngetr] € {t,t+ 1,..., Lyin — 1} = {t,t +1,..., Lyin — 1} (811)
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since Lo, = min{k : k € [2} = min{k : k € L} = Ly;,. Moreover, the subhy-
pergraph of X induced by the edges in Upcr- E} is a t-subset-regular self-comple-
mentary L*-hypergraph for L* = {27} or L* = {2¢7" 2" + 1}. In either case,

Corollary 3.1.5 implies that
npgerrin) € {t,t+1,...,2°7 — 1} (8.1.2)

Thus n satisfies both (8.1.1) and (8.1.2). Both of these conditions hold if and
only if
Nge+r1) € {t,t—F 1,..., Lyin — 1},

and thus the result is true for r. By the principle of mathematical induction, we
conclude that the result holds for all nonnegative integers r, for any fixed positive

integer /.

Suppose that there exists a self-complementary K-hypergraph of order n. We
will show that njgery € {t,# +1,..., ki — 1} by induction on £* — /..

Base Step: If * — {, = 0, then

e e e

K= {Zz o2y 21}

i=c  i=c—1 i=c—d
for some nonnegative integers c,d such that 0 < ¢ —d < ¢ < ¢*. Now for
each k € K , the t-subset-regular self-complementary subhypergraph Xj of X
induced by the edges with size k£ has order n, and hence Corollary 3.1.6 im-
plies that npevy € {t,t+1,...,k — 1} for all k € K. Since k, € K, we have
npe+y € {6t +1,... ke — 1}, as required.

Induction Step: Let r be an integer, r > 1.

e Induction Hypothesis: If K contains a nonempty subset M of consecutive

elements in Ny, m* = max{k : k € M}, m, = min{k : k € M}, a* and
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a, denote the largest elements in the supports of the binary representations
of m* and m,, respectively, and a* — a, = 7 — 1, then npa1 € {t,t +

L,...,m.—1}.
Now suppose that ¢* — ¢, = r. Let
M = {k e K : max{i : i € supp(by)} = (*},

and let M = K\ M. Let m* = max{k : k € M}, let m, = min{k : k €
M } = ki, and let a* and a, denote the largest elements in the supports of
the binary representations of m* and m,, respectively. Then a* = ¢* — 1 and
a, = ly, and so a* — a, = r — 1. Hence by the induction hypothesis, we have

Npga*+1] € {t,t+1,...,m, — 1}. Since m, = k, and a* = ¢* — 1, this implies that

2 9 gooeey e T . i
ey € (Lt + 1,k — 1} (8.1.3)

Now by definition, we have
Z*
M = {25*,2” +207 Y 2@}
1=0*—c

for some integer ¢ such that 0 < ¢ < ¢*. Hence 2 € M C K. Since the
subhypergraph Xy is t-subset-regular, Corollary 3.1.5 implies that njei1) €
{t,t+1,...,2° —1}. But this implies that npee+1) = Nye+). Putting this together
with (8.1.3), we obtain

TL[QZ*+1] S {t,t+ 1, ceey k, — 1},

as required. |
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8.2 Constructions

In this section, we construct some 1-subset-regular self-complementary K-hyper-
graphs, and prove that that necessary conditions established in Section 8.1 are suffi-

cient for certain sets K.

Construction 8.2.1 Let K be a set of positive integers such that kp;, = min{k :
ke K} >2. Let kpax = max{k : k € K}, let b = (b, b1, ...,b1,bo) be the binary
representation of kpyay, and let £ = max{i : b; = 1}. Let s € {1,2,... kppn — 1}, let
m be a positive integer, let S = {oo1,...,00,} such that S NZ,51 = 0, and let
V =8S5UZ,ze+:. For each k € K, let X, be a 1-subset-regular self-complementary
k-hypergraph on V' with antimorphism

—_

m—

6 = (001)(003) - - - (00y) H(jQZ—H,jQZ—H (12—

given by Lemma 3.2.5 (for a = ¢+ 1).
Define X to be the K-hypergraph with vertex set V and edge set £ = Ugex E(X}).

Lemma 8.2.2 The K-hypergraph X of Construction 8.2.1 is 1-subset-regular and

self-complementary.

Proof: The definition of ¢ guarantees that ky.yoe+1] = kmax. Hence for each k € K
we have kpey = k, and thus 1 < s < kjerp = k. Also, since kpin > 2, we have
kmax = 2, and so we are guaranteed that ¢ + 1 > 2. Hence the k-hypergraphs X
given by Lemma 3.2.5 exist for all £ € K. Now the subhypergraph of X induced
by the edges of rank k is X = (V, E(X})), which is 1-subset-regular, and so X is
1-subset-regular. Moreover, since each subhypergraph X is self-complementary and

0 € Ngex Ant(Xy), Proposition 6.1.1 implies that X is self-complementary. |
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Construction 8.2.1 and Lemma 8.2.2 together imply the following sufficient con-
ditions on the order of a 1-subset-regular self-complementary K-hypergraph, for any

set of positive integers K.

Theorem 8.2.3 Let K be a set of positive integers such that kyi, = min{k : k €
K} > 2. Let kpax = max{k : k € K}, let b be the binary representation of kuyax, and
let 0 be the largest element in supp(b). If n is an integer such that n > kyax + 1 and
npeay € {1,2,. .., kmin — 1}, then there exists a 1-subset-regular self-complementary

K -hypergraph of order n. |

Theorem 8.2.3 implies that the necessary conditions on the order of a 1-subset-
regular self-complementary K-hypergraph given by Theorem 8.1.1(3) and (4) are

sufficient for certain sets K.

Theorem 8.2.4 Let K be a set of positive integers such that kyiy, = min{k : k €
K} > 2. Let kpax = max{k : k € K}, let b be the binary representation of kyax, and
let £ be the largest element in supp(b). If K satisfies one of the following conditions,
then there exists a 1-subset-reqular self-complementary K-hypergraph of order n if

and only if n > kypax + 1 and nper) € {1,2,. .. kin — 1},

(1) K = {220 4+ 1,201 20F1 1. 2077 207" 1 11\ S for some S C {2,277 + 1}

and some integers i,r with © > 1 and r > 0.
(2) K is a set of consecutive elements from Ny.
(3) K is a set of consecutive positive integers such that kyi, € Na.

Proof: In all three cases, the sufficiency of the conditions on n follows from Theo-
rem 8.2.3. In cases (1) and (2), the necessity of the conditions on n follow from parts

(3) and (4) of Theorem 8.1.1, respectively.
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[t remains to show that the condition npe1) € {1,2, ..., kmin — 1} is necessary in
case (3). Suppose that K is a set of consecutive positive integers such that &y, € N,
and there exists a 1-subset-regular self-complementary K-hypergraph of order n. The
set K contains a nonempty subset K=Kn N, of consecutive elements of Ny. Let
k, =min{k : k € K}, let k* = max{k : k € K}, let b* be the binary representation of
k*, and let ¢* denote the largest element in supp(b*). Then Theorem 8.1.1(4) implies
that npesy € {1,2,..., k. — 1}. Since the largest element in supp(b*) must equal the
largest element of supp(b), we have ¢* = ¢. Moreover, since ky, € Ny, we also have

ki = Kmin. Hence npery € {1,2, ..., kmin — 1}, as required. i

In the next construction, we use Lemma 3.2.5 to find some sufficient conditions on
the order of a 1-subset-regular self-complementary K-hypergraph for any nonempty

set of positive integers K.

Construction 8.2.5 Let a > 2 be an integer, let K be a set of positive integers, and
let ki, = min{kpe : k € K}. Let s € {1,2,..., Fopin — 1}, let m be a positive integer,
let S = {o01,...,00,} such that SN Z,,9e01 = 0, and let V = S UZ,,5+1. For each
k € K, let Y} be the k-hypergraph on V' given by Lemma 3.2.5.

Define Y to be the K-hypergraph with vertex set V and edge set F = Ugc E(Y%).

Lemma 8.2.6 The K-hypergraph Y of Construction 8.2.5 is 1-subset-reqular and

self-complementary.

Proof: First, since a > 2 and 1 < s < kjge) for all & € K, the hypergraphs Y}, given
by Lemma 3.2.5 exist. Thus for each k € K, the subhypergraph Y, = (V, E(Y)) of Y
induced by the edges of rank k is 1-subset-regular and self-complementary. Moreover,

the permutation

—_

m

0 = (001)(002) - - - (005) ]j(j22+1’j2€+1 +1,...,0+ 1>2€+1 —1)

=
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is an antimorphism of Y}, for all k € K, and so 0 € NgexAnt(Y}). It follows that Y

is 1-subset-regular and self-complementary. i

Construction 8.2.5 and Lemma 8.2.6 together imply the following sufficient con-
ditions on the order of a 1-subset-regular self-complementary K-hypergraph, for any

nonempty set of positive integers K.

Theorem 8.2.7 Let a > 2 be an integer, let K be a set of positive integers, let
kin = min{kpe : k € K} and let kyax = max{k : k € K}. If n > kpay + 1 and

~

npe] € {1,2,... kmin — 1}, then there exists a I-subset-regqular self-complementary

K -hypergraph of order n. |



Chapter 9

Transitive self~-complementary

K-hypergraphs

9.1 Necessary conditions on order

In this section we will determine necessary conditions on the order n of t-fold-
transitive self-complementary K-hypergraphs for various subsets K of {1,2,...,n}.

Let X = (V,FE) be a K-hypergraph. Recall that, for each &k € K, the symbol
X} denotes the subhypergraph of X induced by the edges of X of size k. Since
each permutation in Aut(X) maps edges of Xj onto edges of Xy, it follows that
0 € Aut(X) if and only if § € Aut(X}) for all k € K. Thus Aut(X) = NgexAut(Xy),
which implies that X} inherits the transitivity properties of X, for all £ € K. Hence
if X is t-fold-transitive, then X} is ¢t-fold-transitive for all k € K.

Since t-fold-transitive k-hypergraphs are necessarily t-subset-regular, it follows
that t-fold-transitive K-hypergraphs are also t-subset-regular. Hence we can use
Theorem 8.1.1 to find basic necessary conditions on the orders of t-fold-transitive
self-complementary K-hypergraphs for certain subsets K of the set {1,2,...,n —1}.

However, the following result shows that the property of t-fold-transitivity implies

106
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even stronger necessary conditions on the order n of self-complementary K-hyper-

graphs than those given by Theorem 8.1.1(3) in the case where n =t (mod 27 +1),

Theorem 9.1.1 Let K be a nonempty set of integers which contains a nonempty set
L of integers of the form 2° or 2°+1 for a positive integer . Let Ly., = max{k : k €
L}, let m = min{i : 2° > Lyax}, and let n be an integer such that n =t (mod 2™).

Suppose that there exists a t-fold-transitive self-complementary K-hypergraph X =
(V. E) of order n. Then

p = ® =1 (mod 2™)  for every prime p.

Proof: We know that L., = 2¢ or 241 for some positive integer £. Then m = ¢+1.
Observe that the subhypergraph X, = (V) Er_. ) is a t-fold-transitive self-comple-
mentary k-hypergraph of order n = ¢ (mod 2°*1) for k = 2° or k = 2 + 1. Thus
Theorem 4.1.3 implies that

p e =1 (mod 2°1)  for every prime p.

Since m = £ + 1, this completes the proof. i

9.2 Constructions

In this section, we present several constructions for vertex transitive self-complemen-
tary K-hypergraphs, and thus obtain some sufficient conditions on the order of these

structures, for various sets K of positive integers.

9.2.1 Paley K-hypergraphs

We begin with a construction for vertex transitive self-complementary K-hypergraphs

of prime power order, which is an extension of Construction 4.2.4 for the Paley k-
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uniform hypergraphs P, .

Recall that for a prime power ¢, an element a € F?

o, and an element b € Fy, we

define the mapping gy : F; — F, by %% = ax + b for all z € F,.

Construction 9.2.1 Paley K-hypergraph
Let K be a set of positive integers such that min{k : k € K} > 2. For each k € K,
let

by = max{k), (k = 1)@},

and let
¢ =max{ly: ke K}.

Let ¢ be a prime power such that ¢ = 1 (mod 2"!), and let r be a divisor of the
integer (¢ — 1)/2°"1. Let F, be the field of order q.

Define P, i, to be the K-hypergraph with vertex set
V(Pyrr) =Fq

and edge set
E(Pyir) = |J EPprr),

keK

in which P, , is the Paley k-uniform hypergraph of Construction 4.2.4.
Lemma 9.2.2 The Paley K-hypergraph P k. defined in Construction 9.2.1 is a ver-

tex transitive and self-complementary K-hypergraph.

Proof: Let k € K. Since £ > {; and ¢ = 1 (mod 2*1), it follows that ¢ = 1 (mod

26+1) - Also, since

qg—1 B q—12£_£k B q_12€—€k
e+l QU+l 9l—L, T 9l+1

and r divides (¢ — 1)/2*1, it follows that r also divides (¢ — 1)/2%*!. Hence the
Paley k-hypergraph P, , exists for each & € K, and so P, k, is a well-defined K-
hypergraph. Moreover, the subhypergraph X of X = P, , induced by the edges
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of size k is the (vertex transitive) self-complementary k-hypergraph X, = P, ..
Hence condition (1) of Proposition 6.1.1 holds. Now if w is a generator of F,, then
Lemma 4.2.6(3) implies that a,ro € Ant(FP,x,) = Ant(X}) for all £ € K. Hence
Niex Ant(X}) # 0, and so condition (2) of Proposition 6.1.1 also holds. Thus P,
is a self-complementary K-hypergraph.

Lemma 4.2.6(2) implies that the group G = {1 : b € F,} < Aut(F, k) for all
k € K. Hence Aut(P, x,) = (\yex Aut(Pyr,) contains the subgroup G, which acts

transitively on F, = V(P, k). Thus P, i, is vertex transitive. |

Construction 9.2.1 and Lemma 9.2.2 together imply the following result, which
gives some sufficient conditions on the order of a vertex transitive self-complementary

K-hypergraph.

Theorem 9.2.3 Let K be a set of positive integers such that min{k : k € K} > 2.
For each k € K, let {, = max{k(),(k — 1) }. There exists a vertex transitive

self-complementary K-hypergraph of order n for every prime power n congruent to 1

modulo 2°1, where ¢ = max{l; : k € K }.

Note that Theorem 9.2.3 implies that the converse to Theorem 9.1.1 holds in the
cases where t = 1 and n is a prime power. The next construction for vertex transitive
self-complementary K-hypergraphs is an extension of Construction 4.2.8. It shows

that the converse of Theorem 9.1.1 holds for all n in the case wheret =1 and L = K.

Construction 9.2.4 Generalized Paley K-hypergraph
Let K be a set of positive integers such that min{k : £ € K} > 2. For each k € K,
let
0, = max{ke), (k — 1))},
and let
( =max{l;: ke K}.
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Let n be a positive integer such that
p"® =1 (mod 2°') for every prime p.

Let n = p{*p5? - - - pi* be the unique prime factorization of n, where p; is prime, o; > 1
and p; # p; for all 4,5 € {1,2,...,t} such that i # j. For each ¢ € {1,2,...,t}, let
¢ = pi", let r; be a divisor of the integer (¢; —1)/2"1, and let r = (r1,7,...,7;). Let
[F,, denote the field of order ¢;. Define X,, g, to be the K-hypergraph with vertex set

V(Xpkr) =Fy xFy x--- xF,

and edge set
E(Xn,K,r) - U E(Xn,k,r)a

keK

where for each k£ € K, the symbol X, ;, denotes the k-uniform hypergraph of Con-
struction 4.2.8.

For i € {1,2,...,t}, an element a € F; , and an element b € F,,, the symbol

@; 4 denotes the permutation a,; € Sym(F,,) defined on page 108.

Lemma 9.2.5 The K-hypergraph X, k, defined in Construction 9.2.4 is a vertex

transitive and self-complementary K -hypergraph.

Proof: Let i € {1,2,...,t} and let k € K. Since ¢ > ¢, and ¢; = 1 (mod 21, it

follows that ¢; = 1 (mod 2%7*1). Also, since

G—1 ¢—120% ¢ — 12g_zk

W+l T ol U=l QU+

and r; divides (¢ — 1)/2/"!, it follows that r; also divides (¢ — 1)/2%*1. Hence the
k-hypergraph X, ; , exists for each k € K, and so X,, i, is a well-defined K-hyper-
graph. Moreover, the subhypergraph X, ;, of X, k, induced by the edges of size
k is a (vertex transitive) self-complementary k-hypergraph. Hence condition (1) of

Proposition 6.1.1 holds.



9.2. Constructions 111

For each i € {1,2,...,t}, let w; be a generator of F,,. Then Lemma 4.2.6(2) and
(3) imply that o; i o € Ant(Fy, k) for all k € K, and hence

0117‘071“1 R 0427“);2,0 X e X O‘t,wt”,o € AHt(ka,r)

for all k € K. Hence (,c;c Ant(X, 1) # 0, and so condition (2) of Proposition 6.1.1
also holds. Thus X, k, is a self-complementary K-hypergraph.

By Lemma 4.2.6(2), the group G; = {a; 1 : b € Fy,} < Aut(P,, ) forall k € K.
Hence G = G; x G x --- x Gy < Aut(X,, ) for all k € K. Thus Aut(X, ,) =

Mkex Aut(Xy, i) contains the subgroup G, which acts transitively on
V(Xnkxr) =Fy xFg x - xF,.

Thus X, i is vertex transitive. |

Construction 9.2.4 and Lemma 9.2.5 together imply the following result, which
gives some sufficient conditions on the order of a vertex transitive self-complementary

K-hypergraph.

Theorem 9.2.6 Let K be a set of positive integers such that min{k : k € K} > 2.
For each k € K, let €, = max{k(),(k — 1))}, and let { = max{{; : k € K}.
There exists a vertex transitive self-complementary K -hypergraph of order n for every

positive integer n such that

p"® =1 (mod 27Y)  for every prime p.

Note that Theorem 9.2.6 implies that the converse to Theorem 9.1.1 holds in the

case where L = K.
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9.2.2 A rank-increasing construction

We begin by introducing a rank-increasing construction due to Potocnik and Sajna
[24] which takes a k-hypergraph as input, and returns a k*-hypergraph for any k* > k.
Lemma 9.2.8 shows that if (kk ) is odd, this construction preserves the properties of
vertex-transitivity and self-complementarity. The proof of Lemma 9.2.8 is included

for the sake of completeness.

Construction 9.2.7 [24]
Let X = (V, E) be a k-hypergraph and let £* be an integer such that k* > k. Define
X* to be the k*-hypergraph with vertex set V* =V and edge set

E* = {e € V*) . ¢ contains an even number of elements of E as subsets}.

Lemma 9.2.8 [24] Let X = (V, E) be a k-hypergraph, let k* be an integer such that
k* >k and (kk) is odd, and let X* be the k*-hypergraph defined in Construction 9.2.7.

1. If X is self-complementary, then so is X*.

2. If X 1is vertex transitive, then so is X*, and if X is doubly transitive, then so
15 X*.

Proof: Let e € V*"). By definition, we have e € E* if and only if e contains an even

k*

k) is odd, this is equivalent to saying

number of elements of F as subsets. Since (
that e contains an odd number of elements of V*®) \ E. Hence e ¢ E* if and only if
e contains an even number of elements of V*) \ E. This implies that any antimor-
phism of X is also an antimorphism of X*, and any automorphism of X is also an
automorphism of X*. Hence if X is self-complementary, then so is X*. Moreover,

the transitivity properties of X are inherited by X*. Thus if X is vertex-transitive,
then so is X*, and if X is doubly-transitive, then so is X*. i
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For a nonempty set K of positive integers, we can use Construction 9.2.7 to
construct a K-hypergraph from a uniform hypergraph whose rank is the smallest

integer in K.

Construction 9.2.9 Let K be a set of positive integers such that Ky, = min{k :
ke K} >2, and let X = (V, E) be a kyin-hypergraph. For each k € K such that
k > kmin, use Construction 9.2.7 to construct the k-hypergraph X; = (V*, E}) with

vertex set VV* =V and edge set
E; ={e€ V) . e contains an even number of elements of F as subsets}.

Now define X* = (V*, E*) to be the K-hypergraph with vertex set V* =V and edge
set B = Uper Ei-

Lemma 9.2.10 Let K be a set of positive integers such that kuyy, = min{k : k €
K} > 2, and let X = (V,E) be a kyin-hypergraph. Let X* be the K-hypergraph
defined in Construction 9.2.9. Suppose that (k:in) 1s odd for all k € K. Then the
following hold.

1. If X is self-complementary, then so is X*.

2. If X 1s vertex transitive, then so is X*, and if X is doubly transitive, then so

18 X*.

Proof: Let £k € K. Since k > ky;, and (kk ) is odd by assumption, the proof of

Lemma 9.2.8 shows that Aut(X) < Aut(X}) and Ant(X) < Ant(X}). Since k was
arbitrary, we conclude that
Ant(X) < () Ant(X;) = Ant(X™)
keK
and

Aut(X) < ) Aut(X;) = Aut(X7).

keK
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Hence if X is self-complementary, then so is X*, and the transitivity properties of X
are inherited by X*. Thus if X is vertex transitive, then so is X*, and if X is doubly

transitive, then so is X*. i

Construction 9.2.9 can be used to generate many vertex transitive self-comple-
mentary K-hypergraphs for various sets of positive integers K from the vertex transi-
tive self-complementary graphs and 3-hypergraphs which were constructed in Chap-
ter 4. We obtain the following sufficient conditions on the orders of vertex transitive
self-complementary K-hypergraphs.

Recall that a Muzychuk integer is a positive integer n such that p"® is congruent

to 1 modulo 4 for all primes p.

Theorem 9.2.11 Let K be a set of positive integers. Let n be a Muzychuk integer,

and let q be a prime power congruent to 1 modulo 4.

(1) If k = 2 or 3 (mod 4) for all k € K, then there exists a vertex transitive self-

complementary K-hypergraph of order n.

(2) If k=3 (mod 4) for all k € K, then there exist vertex transitive self-complemen-
tary K-hypergraphs of orders 2n and (1+q)n, and there exists a doubly transitive
self-complementary K -hypergraph of order 1 + q.

Proof:

(1) Let n be a Muzychuk integer, and let K be a set of positive integers such that
k =2 or 3(mod 4) for all k € K. Let K = K U{2}. Then kpy = min{k : k €
K} = 2. By Theorem 4.2.2(1), there exists a vertex transitive self-complementary
graph (a 2-hypergraph) X' = (V| E) of order n. Let X% be the K-hypergraph of
Construction 9.2.9 obtained using the base graph X. Since k = 2 or 3 (mod 4),
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we have k = 4t + 2 or k = 4t + 3 for some nonnegative integer ¢, and so

(k> _ (4t +2)(4t + 1)

) 5 = (2t +1)(4t+ 1),

or

(k> _ (4t +3)(4t+2)

) > = (4t +3)(2t +1).

Hence in either case (g) is odd. Thus (g) isodd for all k& € k, and so Lemma 9.2.10
implies that X% is a vertex transitive self-complementary K -hypergraph of order
n. Since K C K, the K -subhypergraph of X% induced by the edges with ranks

in K is a vertex transitive self-complementary K-hypergraph of order n.

Suppose that K is a set of positive integers such that & = 3 (mod 4) for all
k € K, let n be a Muzychuk integer, and let ¢ be a prime power congruent to 1
modulo 4. Let K = K U {3}.

By Theorem 4.2.3(2), there exists a vertex transitive self-complementary 3-hy-
pergraph X2" of order 2n, a vertex transitive self-complementary 3-hypergraph
XE(‘HQ)" of order (1 + ¢)n, and a doubly transitive self-complementary 3-hyper-
graph X31+q of order 1+ ¢q. Let XI%(" be the K-hypergraph of Construction 9.2.9
obtained using base graph X2" let X I(§+q)n be the K-hypergraph of Construc-
tion 9.2.9 obtained using base graph XéHq)", and let X}:q be the K-hypergraph

of Construction 9.2.9 obtained using base graph X§+q.

Since k = 3 (mod 4), we have k = 4t + 3 for some nonnegative integer ¢. Thus

B\ (4t +3)(4t+2)(4t+1)  (4+3)(2t+1)(4t+1)

3) 3! B 3 ’

which is odd. It follows that (’;) is odd for all k¥ € K. Thus Lemma 9.2.10 implies
that X2 and X 2+q)n are vertex transitive self-complementary K-hypergraphs of

order 2n and (1+ g)n, respectively, and that Xll;q is a doubly transitive self-com-

plementary K -hypergraph of order 1+ ¢. Since K C K, the K -subhypergraphs
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of X2 and X}(Hq)n induced by the edges with sizes in K are vertex transitive
self-complementary K-hypergraphs of order 2n and (1 + ¢)n, respectively, and
the K-subhypergraph of X}:q induced by the edges with sizes in K is a doubly
transitive self-complementary K-hypergraph of order 1 + g. i



Appendix A

In Lemma A.0.13, we will show directly that the necessary and sufficient condition
(2.3.1) of Corollary 2.3.2 on the order n of a self-complementary k-hypergraph is
equivalent to Szymanski and Wojda’s condition that (Z) is even. First we will need
a preliminary lemma.

Recall the definitions of the symbols nj,,; and [ } from page 5 of Section 1.1.

n
m

Lemma A.0.12 Let m,n,d be positive integers, where m > n. Then

[m} [n} [m — n] L if myg < npg
0 otherwise

Proof: By the division algorithm, we have

m = [%} d+myqg and n= [%} d + nyg,
where 0 < mjg < d and 0 < nyg < d. Hence
m n
m—n= ([E} - [3}) d+ (m[d} - n[d}) , (A.O.l)

and —d < mig — Mg < d.

If myg > nyq), then 0 < myg — nyg < d and so (A.0.1) shows that (m — n)[d] =

mig — njq and [m;”} = [%] — [%}, which implies that
m n m—n
[ﬂ—[ﬂ—[ q }:O'

117
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On the other hand, if m[g < ng, then we can rewrite (A.0.1) as

m—n = <[%} — [%} —1>d+(d+m[d]_n[d])7

where 0 < d + mjq) — ng < d, which shows that (m — n)[d] = d + myy — nyg and
[2=2] = [2] — [2] — 1. This implies that

5]~ [ -

Recall the definition of the symbol n(, from page 5 of Section 1.1. It is well

known that for any positive integer m and prime number p, we have

It follows that

=mly) —nly) — (m—n)ly)

B e

T

We can evaluate each term in the sum above using the fact that

_ ]_ lfm r1 < Ny
-l e e
p p p 0 otherwise

which follows directly from Lemma A.0.12.

Lemma A.0.13
Let k and n be positive integers, k < n, and let b be the binary representation of k.

Then (Z) is even if and only if

nppe+1] < Kpperry for some £ € supp(b). (A.0.4)
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Proof: Observe that (}) is even if and only if (}) @ = L By (A.0.2) we have

Q. SEE e ws

By (A.0.3), for each r > 1 we have

or or or | '

0 otherwise

Hence (A.0.5) implies that (7) is even if and only if
njgr) < kpprp  for some 7 > 1,
that is, if and only if
npery < kperry  for some £ > 0. (A.0.6)

Now we will show that the condition in (A.0.6) holds for some ¢ > 0 if and only
if it holds for some ¢ € supp(b). If (A.0.6) holds for some ¢ € supp(b), then (A.0.6)
certainly holds for some ¢ > 0. Conversely, assume for the sake of contradiction that
the condition in (A.0.6) does not hold for any ¢ € supp(b), but it holds for some ¢ ¢
supp(b). Now if i ¢ supp(b) for all 7 such that 0 <4 </, then ke = Zfzo b2t =0,
and so (A.0.6) implies that njse11) < 0, giving a contradiction. Hence there must exist
a nonnegative integer ¢ < ¢ such that ¢ € supp(b). Let ¢, denote the largest such
integer i. Then ket = Ef*zo b;2" = kpe.+1), and so (A.0.6) implies that

Nge+1) < k[22*+1]. (AO?)
Since £, < £, we have np.+1] < npe+1y, and so (A.0.7) implies that
Nges+1) < k[QZ*Jrl].

Hence ¢, € supp(b) and (A.0.6) holds for /., contradicting our assumption. We con-
clude that (A.0.6) holds if and only if ner1) < kjgesry for some £ € supp(b), and thus
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(1) is even if and only if (A.0.4) holds. |

The following technical lemma is used in the proof of Theorem 2.2.5 in Sec-

tion 2.2.2. It is also used to verify the validity of Algorithm 2.4.2 in Section 2.4.

Lemma A.0.14 Let ¢ and n be positive integers such that n > 2. If there exists a
sequence of nonnegative integers ag, ay, . ..,a;,_1 such that Zf:é an’ > n', then there
exists a sequence of integers co, ¢y, . ..,co—1 such that0 < c¢; < a; fort =0,1,...,0—1,

-1
and Y, _, cin® = nt.

Proof: The proof is by induction on /.

Base Step: The statement is certainly true if £ = 1, for if there is a nonnegative
integer ag such that agn® > n' = n, then ag > n, and so the result holds with ¢y = n.

Induction Step: Let ¢ > 2 and assume that the statement is true for £ —1. That
is, assume that if there is a sequence of non-negative integers ay, ..., a,_s such that
Zf;g a;n' > n'~!, then there exists a sequence of integers ¢y, . . ., ¢_o with 0 < ¢ < @y,
for  =0,1,...,¢ — 2, such that Zf;g ént =ntl

Now suppose that ag,...,a,_1 is a sequence of nonnegative integers such that
Zf:é a;n’ > nb. If ay_; > n, then to obtain the desired sequence, set ¢; = 0 for all
i€{0,1,...,£—2}, and set ¢,_; =n. Then 0 < ¢; < q; for all 7, and Zf;é ent =nt,
as required.

Hence we may assume that a,_1 < n — 1. Then a,_; = n — k for an integer k

such that 1 < k <n. In this case ag,aq,...,a,_5 is a sequence such that
-2
Zain’ >nf —(n—k)n™' =kn't >t
i=0

Hence by the induction hypothesis, there exists a sequence {c}} such that 0 <
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Z?:o c; <a;forallie{0,1,...,0—2}, and Zf;g cin = n*~1. Now

{—2
Z(ai _ Czl)nz > nt _ (n — k4 1)n£—1 _ (k‘ _ 1)n£—1 > nt1
1=0

for K > 1. Thus for £k > 1 we can continue in this way, applying the induction
hypothesis k times to obtain k sequences of integers {c} }, {c?}, ..., {c}} such that 0 <
S oc <aiforallie{0,1,...,0—2} and Y ;) cln' = n®Lorall j € {1,2,...,k}.
Now to obtain the desired sequence, set ¢; = Zle CZ for all i € {0,1,...,¢—2}, and

set ¢p_1 = ay_1 =n — k. Then certainly 0 < ¢; < a; for i =0,1,...,¢ — 1. Moreover,
-1 (-2
Z ent = Z ent + cpntt
i=0 i=0
-2 T k
= Z ZCZ n' + (n — k)n*!
i=0 |j=1
ko [e—2
= cn'| 4+ (n—k)nt!
7j=1 L=0
k
= Z n ' 4 (n — k)nt?
j=1

as required. The result follows by induction. i

The next two technical lemmas are used in the proof of Lemma 3.2.3 in Sec-

tion 3.2.2.

Lemma A.0.15 Let «, i, and j be integers such that 0 < 1,7 < 2%, i+ j is odd,
and 2%(2:) (2;) is an integer. Then 2%(2:) (2;) is odd if and only if i € {0,2*} or
j €{0,2%}.

Proof: Since ¢ + j is odd, either ¢ or 7 must be odd. First suppose that i is odd.
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Now

=(1)(5)-7=()0)

20\ 1 J 20 — g 1 J
Since 7 < 2% and i is odd, any integer r in the support of the binary representation of
i satisfies 7 < a — 1. Since (2% — 1)gr+1] 2> dfor+1) for all such r, Lemma A.0.13 implies
that (*"") is odd. Now if j & {0,2°}, then (2%)@r+1] = 0 < jjr+1) for some 7 in the
support of the binary representation of j, and so Lemma A.0.13 implies that (2;) is

even. Since 2% — ¢ is odd, this implies that the integer 2 (*)(*) = 52 (*,) (%)

2a \ 4 J 20 —j i j
is even. On the other hand, if j € {0,2%}, then (2;) = 1, and so 5 (%) (2;) -
== (2;) = 52— (*") is an odd integer. Thus if i is odd, then (%) (2;) is

odd if and only if j € {0,2%}.
By a symmetric argument, if j is odd, then s (%) (2;) is odd if and only if

20\ ¢

i e {0,2°). i

Lemma A.0.16 Let r be a nonnegative integer. Suppose that Ay, Aa, ..., N\, @S a
sequence of integers such that 0 < X\; < r for alli € {1,2,...,n}. Then there is a
function v : {1, Ay ..o A} — {—=1,1} such that 0 < > 7 Niv(\) <.

Proof: The proof is by induction on n. If n = 1, then take v(\;) = 1. If n = 2,
then if Ay < Ay, take v(A;) = —1 and v(A\y) = 1, and if \; > Ag, take v(A\;) = 1 and
v(A2) = —1. Hence the result holds when n € {1, 2}.

Let n > 2 and suppose the result holds for all such sequences of length n—1. Let
A1, A2, ..., Ap be a sequence of integers such that 0 < \; < r for all ¢ € {1,2,...,n}.
By the induction hypothesis, there is a function v' : {A,..., \,1} — {—1,1} such
that 327" \jv'(\;) = A for some X such that 0 < A < r. By the base case n = 2,
there is a function 0 : {\ A\,} — {—1,1} such that 0 < Ao(A) + A 0(\,) < 7.
Let v be the function v : {\,...,A\,} — {—1,1} such that v(\;) = v(A\)v'()\;) for
ie{l,2,...,n—1}, and v(\,) = 9(\,). Then > 7 | Nv(\;) = Ao(A) + A, 0()\,) and
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so 0 < > Awv();) <1 as required. The result follows by induction. |
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