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Abstract

In this thesis, we survey the current research into self-complementary hypergraphs,

and present several new results.

We characterize the cycle type of the permutations on n elements with order equal

to a power of 2 which are k-complementing. The k-complementing permutations map

the edges of a k-uniform hypergraph to the edges of its complement. This yields a test

to determine whether a finite permutation is a k-complementing permutation, and

an algorithm for generating all self-complementary k-uniform hypergraphs of order

n, up to isomorphism, for feasible n. We also obtain an alternative description of

the known necessary and sufficient conditions on the order of a self-complementary

k-uniform hypergraph in terms of the binary representation of k.

We examine the orders of t-subset-regular self-complementary uniform hyper-

graphs. These form examples of large sets of two isomorphic t-designs. We restate

the known necessary conditions on the order of these structures in terms of the binary

representation of the rank k, and we construct 1-subset-regular self-complementary

uniform hypergraphs to prove that these necessary conditions are sufficient for all

ranks k in the case where t = 1.

We construct vertex transitive self-complementary k-hypergraphs of order n for

all integers n which satisfy the known necessary conditions due to Potočnik and

Šajna, and consequently prove that these necessary conditions are also sufficient. We

also generalize Potočnik and Šajna’s necessary conditions on the order of a vertex

ii



iii

transitive self-complementary uniform hypergraph for certain ranks k to give neces-

sary conditions on the order of these structures when they are t-fold-transitive. In

addition, we use Burnside’s characterization of transitive groups of prime degree to

determine the group of automorphisms and antimorphisms of certain vertex transi-

tive self-complementary k-uniform hypergraphs of prime order, and we present an

algorithm to generate all such hypergraphs.

Finally, we examine the orders of self-complementary non-uniform hypergraphs,

including the cases where these structures are t-subset-regular or t-fold-transitive. We

find necessary conditions on the order of these structures, and we present construc-

tions to show that in certain cases these necessary conditions are sufficient.
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Part I

Self-complementary uniform

hypergraphs
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Chapter 1

Introduction

1.1 Definitions

For a finite set V and a positive integer k, let V (k) denote the set of all k-subsets of V .

A hypergraph with vertex set V and edge set E is a pair (V, E), in which V is a finite

set and E is a collection of subsets of V . A hypergraph (V, E) is called k-uniform (or

a k-hypergraph) if E is a subset of V (k). The parameters k and |V | are called the rank

and the order of the k-hypergraph, respectively. The vertex set and the edge set of

a hypergraph X will often be denoted by V (X) and E(X), respectively. Note that a

2-hypergraph is a graph.

An isomorphism between k-hypergraphs X and X ′ is a bijection φ : V (X) →
V (X ′) which induces a bijection from E(X) to E(X ′). If such an isomorphism exists,

the hypergraphs X and X ′ are said to be isomorphic. An automorphism of X is

an isomorphism from X to X. The set of all automorphisms of X will be denoted

by Aut(X). Clearly, Aut(X) is a subgroup of Sym(V (X)), the symmetric group of

permutations on V (X).

The complement XC of a k-hypergraph X = (V,E) is the hypergraph with vertex

set V and edge set EC = V (k) \ E. A k-hypergraph X is called self-complementary
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1.1. Definitions 3

if it is isomorphic to its complement. An isomorphism between a self-complementary

k-hypergraph X = (V, E) and its complement XC is called an antimorphism of X.

The set of all antimorphisms of X will be denoted by Ant(X). It is easy to check

that Aut(X) ∪ Ant(X) is a subgroup of Sym(V ), and that Aut(X) is an index-2

subgroup of Aut(X) ∪ Ant(X). Also, it is clear that Aut(X) = Aut(XC) when X is

self-complementary. An antimorphism of a self-complementary k-hypergraph is often

called a k-complementing permutation.

Let X = (V, E) be a k-hypergraph, let t be a positive integer, t < k, and let

f ∈ V (t). We define the t-valency valtX(f) of f in X to be the number of edges e ∈ E

containing f . A k-hypergraph X is called t-subset-regular if the t-valency of f in

X is independent of the choice of f ∈ V (t), and hence is called the t-valency of X

without ambiguity. A k-hypergraph is regular if it is 1-subset-regular. A k-hyper-

graph is called t-fold-transitive, or t-transitive, if Aut(X) acts transitively on the set

of ordered t-tuples of pairwise distinct vertices of X. Clearly, every t-transitive k-hy-

pergraph is t-subset-regular. A k-hypergraph X is called vertex transitive (or simple

transitive) if it is 1-fold-transitive, and it is called doubly transitive if it is 2-fold-

transitive. Note that for graphs (2-hypergraphs), the properties of t-subset-regularity

and t-fold-transitivity are undefined unless t ≤ 2. Doubly transitive or 2-subset-

regular graphs must be complete or edgeless, and so for graphs these properties are

only interesting when t = 1, in which case these concepts correspond to the well

studied properties of regularity and vertex transitivity in graphs.

There is a connection between t-subset-regular hypergraphs and designs. Hence

results from design theory are applicable to these hypergraphs and vice versa. For

t ≤ k ≤ n, a t-(n, k, λ) design is a pair (V,B) in which V is a set of cardinality n and B
is a collection of k-subsets of the point set V such that every t-subset of V is contained

in exactly λ elements of B. Hence a t-subset-regular k-hypergraph X of order n is a

t-(n, k, λ) design in which λ is equal to the t-valency of X. A large set of t-(n, k, λ)

designs of size N , denoted by LS[N ](t, k, n), is a partition of the complete design
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(V, V (k)) into N disjoint t-(n, k, λ) designs, where λ =
(

n−t
k−t

)
/N . If a t-subset regular

k-hypergraph X of order n is self-complementary, then X and its complement XC are

both t-(n, k, λ) designs with λ =
(

n−t
k−t

)
/2. Hence the pair {X, XC} is a LS[2](t, k, n)

in which the t-designs are isomorphic. If X is t-fold-transitive, then the corresponding

t-design is also t-fold-transitive. Hence vertex transitive self-complementary k-hyper-

graphs of order n correspond bijectively to large sets of t-designs LS[2](t, k, n) with

t ≥ 1 in which the t-designs are point-transitive and isomorphic.

In this thesis, however, we will use terminology from hypergraph theory, rather

than design theory.

Let pr be the highest power of a prime p dividing the order of a finite group G. A

Sylow p-subgroup of G is a subgroup of G of order pr. We will make use of the following

notation for permutation groups. For a finite set Ω, a point v in Ω, a permutation τ

on Ω, a permutation group G on Ω, and a prime p, the symbols vτ , vG, τ−1Gτ , and

Sylp(G) will denote the image of v by τ , the orbit of G containing v, the conjugate of

G by τ , and the set of all Sylow p-subgroups of G, respectively. The stabilizer of the

point v in the group G is denoted by Gv and defined by Gv = {τ ∈ G : vτ = v}. For

a subset ∆ ⊆ Ω, the set-stabilizer of the set ∆ in G is denoted by G∆ and defined by

G∆ = {τ ∈ G : ∆τ = ∆}, where ∆τ = {vτ : v ∈ ∆}. It is not difficult to show that

the stabilizer Gv and the set-stabilizer G∆ are each subgroups of G. For finite sets Ω

and Π, a permutation α of Ω, and a permutation β of Π, the permutation α × β of

Ω× Π is defined by

(u, v)α×β = (uα, vβ), for all (u, v) ∈ Ω× Π.

For groups G ≤ Sym(Ω) and H ≤ Sym(Π), the symbol G × H denotes the set of

permutations {α×β : α ∈ G, β ∈ H}. One can easily verify that G×H is a subgroup

of Sym(Ω× Π).

For positive integers m and n, let n[m] denote the unique integer in {0, 1, . . . , m−
1} such that n ≡ n[m](mod m). Thus n[m] is the remainder upon division of n by
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m. Let
[

n
m

]
denote the quotient upon division of n by m. Finally, for any prime

number p, let n(p) denote the largest integer i such that pi divides n. We will denote

the binary representation of an integer k by a vector b = (bm, bm−1, . . . , b1, b0)2. This

is, the entries of the vector b satisfy k =
∑m

i=0 bi2
i, bm = 1, and bi ∈ {0, 1} for

all i ∈ {0, 1, . . . , m}. The support of the binary representation b is the set {i ∈
{0, 1, 2, . . . ,m} : bi = 1}, and is denoted by supp(b).

1.2 History and layout of part I

Much of the research to date into self-complementary uniform hypergraphs has been

focused on determining necessary and sufficient conditions on the order of these struc-

tures. In the early 1960s, Sachs [29] and Ringel [28] determined necessary and suffi-

cient conditions on the order n of a self-complementary graph (2-hypergraph). They

used a simple counting argument to show that n must be congruent to 0 or 1 modulo

4, and then they characterized the lengths of the cycles in the disjoint cycle decom-

position of any graph antimorphism, giving an algorithm for generating all self-com-

plementary graphs of a given order n. In particular, they showed that there exists a

self-complementary graph of every admissible order n ≡ 0, 1(mod 4). In 1978, M.J.

Colbourn and C.J. Colbourn [7] showed that one of the most important problems

in graph theory, the graph isomorphism problem, is polynomially equivalent to the

problem of determining whether two self-complementary graphs are isomorphic. Since

then, there has been a great deal of research into self-complementary graphs. A good

reference on self-complementary graphs and their generalizations was written by A.

Farrugia [10].

In Part I of this thesis, we focus on the generalization of self-complementary

graphs to self-complementary k-uniform hypergraphs. Part I is divided into four

chapters.
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Generating hypergraphs

In Chapter 2, we present necessary and sufficient conditions on the order n of a self-

complementary k-uniform hypergraph, and we discuss a method for generating all of

these structures up to isomorphism, for feasible n.

In 1985, Suprunenko [30] generalized the method by Ringel and Sachs for generat-

ing all self-complementary graphs to find a method for generating all self-complemen-

tary 3-hypergraphs. His characterization of the cycle type of an antimorphism of a

3-hypergraph was also found independently by Kocay [19] in 1992. In 2005, Szymański

took this method one step further to characterize the cycle type of an antimorphism

of a 4-hypergraph, and gave an algorithm to generate all self-complementary 4-hyper-

graphs of a given order n. In 2007, Wojda gave a general characterization of the cycle

type of an antimorphism of a k-hypergraph. Wojda’s characterization is stated in

Theorem 2.2.4. However, given a permutation in Sym(n), it is difficult to determine

whether Wojda’s condition holds. In Theorem 2.2.5, we give a more transparent char-

acterization of the cycle type of a k-complementing permutation in Sym(n) which

has order equal to a power of 2. This yields a test to determine whether or not a

finite permutation is a k-complementing permutation (see Corollary 2.2.7 and Algo-

rithm 2.4.4), and an algorithm for generating all self-complementary k-hypergraphs

of order n, up to isomorphism, for all feasible n and k (see Algorithm 2.4.3). This ex-

tends the previous results for the cases k = 2, 3, 4 due to Ringel, Sachs, Suprunenko,

Kocay and Szymański.

In 2007, Szymański and Wojda proved that for positive integers n and k with

k ≤ n, a self-complementary k-uniform hypergraph of order n exists if and only if
(

n
k

)
is even. Our characterization of the cycle type of a k-complementing permutation

in Sym(n) gives an alternative description of this necessary and sufficient condition

on the order of a self-complementary k-uniform hypergraph in terms of the binary

representation of k (see Corollary 2.3.2). This yields more transparent conditions on
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order in the case where k is a sum of consecutive powers of 2 (see Corollary 2.3.4).

Regular hypergraphs

In Chapter 3, we examine the orders of t-subset-regular self-complementary k-uniform

hypergraphs.

In 1975, Hartman showed that a necessary condition for the existence of a

LS[2](t, k, n) is that
(

n−i
k−i

)
is even for all i ∈ {0, 1, . . . , t}, and conjectured that these

necessary conditions are also sufficient. In 2003, Khosrovshahi and Tayfeh-Rezaie[17]

gave a useful and equivalent description of these necessary conditions as a set of con-

gruence relations. This gives necessary conditions on the order of a t-subset-regular

self-complementary k-hypergraph.

In 1998, Ajoodani-Namini proved that Hartman’s conjecture was true for t = 1, 2.

However, this does not prove that there exist 1- and 2-subset-regular self-complemen-

tary k-hypergraphs for every n satisfying Hartman’s necessary conditions, since there

is no guarantee that the t-designs in a LS[2](t, k, n) are isomorphic. In 1985, Rao [27]

constructed regular self-complementary graphs (2-hypergraphs) of every admissible

order n (that is, n ≡ 1 (mod 4)). In 2007, Potočnik and Šajna [23] found con-

structions for 1-subset-regular self-complementary 3-hypergraphs of every admissible

order n (that is, n ≡ 1, 2 (mod 4)). In 2008, Knor and Potočnik [18] constructed

2-subset-regular self-complementary 3-hypergraphs of every admissible order n (that

is, n ≡ 2 (mod 4)). Hence Hartman’s necessary conditions are sufficient in the cases

where k ∈ {2, 3}. We will state these previous results in Chapter 3.

In Theorem 2.3.5, we reformulate Khosrovshahi and Tayfeh-Rezaie’s necessary

conditions on the order of a t-subset-regular self-complementary k-hypergraph in

terms of the binary representation of k. This yields more transparent necessary

conditions on the order of these structures in the case where the rank k is a sum of

consecutive powers of 2. In addition, we prove that Khosrovshahi and Tayfeh-Rezaie’s
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necessary conditions are in fact sufficient for all k in the case t = 1. This yields the

main result of this section, Theorem 3.2.6, which states that a 1-subset-regular self-

complementary k-hypergraph of order n exists if and only if 1 ≤ n[a] < k[2a] for some

integer a such that max{i : 2i | k} < a ≤ min{i : 2i > k}. We conclude the chapter

with some open problems, and we discuss their connection to design theory.

Transitive hypergraphs

In Chapter 4, we examine the orders of t-fold transitive self-complementary k-uniform

hypergraphs.

In 1985, Rao [27] constructed vertex transitive self-complementary graphs of all

orders n for which the highest power pr of any prime p dividing n satisfies pr ≡ 1 ( mod

4), and conjectured that these sufficient conditions on the order of a transitive self-

complementary graph may also be necessary. In 1997, Li [20] proved Rao’s conjecture

was correct in the case when n is a product of distinct primes. In 1999, Muzychuk [21]

gave a group-theoretic proof of Rao’s conjecture for all n. Hence a vertex transitive

self-complementary graph of order n exists if and only if the highest power pr of

any prime p dividing n is congruent to 1 modulo 4. In 2007, Potočnik and Šajna[24]

generalized Muzychuk’s result and showed that, if k = 2` or k = 2`+1 and there exists

a vertex transitive k-hypergraph of order n ≡ 1 (mod 2`+1), then the highest power

pr of any prime p dividing n must be congruent to 1 modulo 2`+1. In Section 4.1.1,

we state the results to date regarding necessary conditions on the order of vertex

transitive self-complementary uniform hypergraphs. In Section 4.1.2, Theorem 4.1.3,

we extend Potočnik and Šajna’s result inductively to give necessary conditions on

the order of a t-fold transitive k-hypergraph of order n ≡ t (mod 2`+1), for all t ∈
{1, 2, . . . , k − 1}.

Potočnik and Šajna also gave constructions of vertex transitive self-complemen-

tary 3-hypergraphs, and showed that if k = 3, their necessary condition is also suffi-
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cient, consequently generalizing Rao and Muzychuk’s result to 3-hypergraphs of odd

order. They also constructed many other vertex transitive self-complementary k-hy-

pergraphs, and obtained more sufficient conditions on the order of these structures.

We state these sufficient conditions in Section 4.2.1. In Section 4.2.2, we present Con-

struction 4.2.8 for vertex transitive self-complementary 2`- and (2` + 1)-hypergraphs

of any order n satisfying Potočnik and Šajna’s necessary conditions, and consequently

we prove that their necessary conditions are sufficient for these ranks. This yields

Theorem 4.2.10, the main result of this chapter. We close Chapter 4 with some open

problems.

Transitive hypergraphs of prime order

In Chapter 5, we use a characterization of the transitive groups of prime degree due

to Burnside [35] and Zassenhaus [38] to determine the group of automorphisms and

antimorphisms of the vertex transitive self-complementary k-hypergraphs of prime

order p ≡ 1 (mod 2`+1) in the case where k = 2` or k = 2` + 1. We use this

information to generate all such hypergraphs in Algorithm 5.3.1. As a consequence,

we obtain a bound on the number of pair-wise non-isomorphic vertex transitive self-

complementary graphs of prime order p ≡ 1 (mod 4) (see Corollary 5.3.4). We

conclude Chapter 5 with some open problems.



Chapter 2

Generating self-complementary

hypergraphs

In Section 2.1, we discuss a method for generating self-complementary k-hypergraphs

of order n given a k-complementing permutation in Sym(n), which yields a simple

characterization of k-complementing permutations and a method for generating all of

the self-complementary k-hypergraphs having a given antimorphism θ.

In Section 2.2 we present some results due to Ringel, Sachs, Suprunenko, Kocay,

and Szymański regarding the cycle type of an antimorphism of a self-complementary

k-hypergraph for k = 2, 3, 4. We also present a general characterization of the cycle

type of a k-complementing permutation in Sym(n) due to Wojda. Then we present a

new result, Theorem 2.2.5, which characterizes the cycle type of a k-complementing

permutation whose order is a power of 2, for any positive integer k. This yields a test

to determine whether or not a finite permutation is a k-complementing permutation.

It also yields an algorithm for generating all of the self-complementary k-hypergraphs

of order n, up to isomorphism, which will be presented in Section 2.4.

In Section 2.3, we state Szymański and Wojda’s necessary and sufficient condition

on the order n of a self-complementary k-hypergraph, namely that
(

n
k

)
is even. Then

10
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we use Theorem 2.2.5 to obtain an alternative description of this condition in terms

of the binary representation of k (see Corollary 2.3.2). This yields more transparent

conditions on the order of a self-complementary k-hypergraph when the rank k is a

sum of consecutive powers of 2.

2.1 Complementing permutations

In this section, we obtain a simple characterization of the permutations in Sym(n)

which are antimorphisms of self-complementary k-hypergraphs, and we present an

algorithm which generates all of the self-complementary k-hypergraphs that have a

given antimorphism θ ∈ Sym(n).

In some of the literature ([19], [31] and [39]), a permutation which is an an-

timorphism of a self-complementary k-hypergraph is called a k-complementing per-

mutation. In [31] and [39], Szymański and Zwonek demonstrate a close correspon-

dence between the class of all self-complementary k-hypergraphs of order n and the

set of k-complementing permutations on {1, 2, . . . , n}. Let θ be any permutation on

V = {1, 2, . . . , n}. Then one may try to construct a self-complementary k-hypergraph

X induced by θ as follows: Take any A1 ∈ V (k), and define X to be the k-hypergraph

in which

Aθj

1 ∈ E(X) ⇐⇒ j is even. (2.1.1)

Now take A2 ∈ V (k) \A
〈θ〉
1 , and define more elements of X as in (2.1.1), but this time

with A1 replaced by A2. Proceed in this way until we have exhausted all elements of

V (k). This procedure leads to a well-defined self-complementary hypergraph if and

only if

Aθj 6= A for all A ∈ V (k) and for all j odd. (2.1.2)

Note that condition (2.1.2) holds if an only if the sequence

A, Aθ, Aθ2

, Aθ3

, . . .
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has even length. We obtain the following result.

Proposition 2.1.1 [36] Let V be a finite set, let k be a positive integer such that

k ≤ |V |, and let θ ∈ Sym(V ). Then the following three statements are equivalent:

1. θ is a k-complementing permutation.

2. Aθj 6= A for all A ∈ V (k) and for all j odd.

3. The sequence A,Aθ, Aθ2
, Aθ3

, . . . has even length for all A ∈ V (k).

The method described above yields the following algorithm, which takes a k-com-

plementing permutation in Sym(V ) as input, and returns the set Hθ of all self-com-

plementary k-hypergraphs X on V that have θ as an antimorphism. This algorithm

was previously described by Sachs [29] and Ringel [28] for k = 2, by Suprunenko [30]

for k = 2, 3, and by Szymański [31] for k = 3, 4.

Algorithm 2.1.2 [29],[28], [30],[31]

Let V be a finite set, let k be a positive integer such that k ≤ |V |, and let θ be a

k-complementing permutation in Sym(V ).

(1) Set Hθ := ∅.

(a) In steps (a)(i) and (a)(ii) we will find each orbit of θ on V (k) and colour each

element of V (k) either red or blue.

(i) Take an arbitrary uncoloured element A ∈ V (k), and create a sequence

A, Aθ, Aθ2

, Aθ3

, . . .

This sequence is an orbit of θ on V (k), and its length is a divisor of |θ|.
Colour the edges of the form Aθ2i

red and those of the form Aθ2i+1
blue.

Since θ is a k-complementing permutation, Proposition 2.1.1 guarantees

that there are no edges of V (k) coloured both red and blue.
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(ii) Repeat step (a)(i) for any uncoloured edges of V (k), until all edges have

been coloured.

(b) Let m be the number of orbits of θ on V (k) constructed in step (a), and choose

an ordering O1,O2, . . . ,Om of these orbits. Set W = Zm
2 .

(i) Choose a vector w ∈ W .

Let X(θ, w) be the k-hypergraph with vertex set V and edge set E,

where an edge e ∈ Oi is in E if and only if e is red and wi = 1, or e

is blue and wi = 0. Then X(θ, w) is a self-complementary k-uniform

hypergraph.

Set Hθ := Hθ ∪ {X(θ, w)}. Set W := W \ {w,1− w}.
(ii) Repeat step (b)(i) until W = ∅.

(2) Return Hθ.

Note that X(θ, w) is isomorphic to its complement X(θ,1 − w), where 1 is the

vector in Zm
2 with every entry equal to 1. Thus, for each k-complementing permuta-

tion θ in Sym(V ), Algorithm 2.1.2 will generate the set Hθ of all self-complementary

k-hypergraphs on V for which θ is an antimorphism, up to isomorphism. That is,

every self-complementary k-hypergraph on V for which θ is an antimorphism is iso-

morphic to one of the hypergraphs in Hθ. The set Hθ is called the θ-switching class of

self-complementary k-hypergraphs on V . Any two self-complementary k-hypergraphs

in this θ-switching class are said to be θ-switching equivalent, and each self-comple-

mentary k-hypergraph in this θ-switching class is said to be induced by θ.

2.2 Cycle types of antimorphisms

In this section, we will characterize the cycle type of a k-complementing permutation

in Sym(n) whose order is equal to a power of 2. Whenever we refer to a cycle of a

permutation θ, we mean a cycle in the disjoint cycle decomposition of θ.
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2.2.1 Previous results

The following is a well-known result regarding the cycle types of antimorphisms of

self-complementary graphs (2-hypergraphs). It was originally proved by Sachs [29]

and Ringel [28], but a proof can also be found in Suprunenko [30].

Lemma 2.2.1 [29, 28, 30] A permutation θ is an antimorphism for a self-comple-

mentary graph if and only if one of the following hold:

(i) The length of every cycle of θ is divisible by 4.

(ii) θ has exactly one fixed point, and all other cycles have length divisible by 4.

Suprunenko [30] proved the following analogue to Lemma 2.2.1 for 3-hypergraphs.

This result was also proved later by Kocay in [19].

Lemma 2.2.2 [30, 19] A permutation θ is an antimorphism of a self-complementary

3-hypergraph if and only if one of the following hold:

(i) Every cycle of θ has even length.

(ii) θ has one or two fixed points, and all other cycles have length divisible by 4.

Szymański [31] took this method a step further, and proved the following ana-

logue of Lemmas 2.2.1 and 2.2.2 for 4-hypergraphs.

Lemma 2.2.3 [31] A permutation θ is an antimorphism for a self-complementary

4-hypergraph if and only if one of the following hold:

(i) The length of every cycle of θ is divisible by 8.

(ii) θ has one, two or three fixed points and all other cycles have length divisible by

8.

(iii) θ has one cycle of length 2, and all other cycles have length divisible by 8.
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(iv) θ has one fixed point, 1 cycle of length 2, and all other cycles have length divisible

by 8.

(v) θ has one cycle of length 3, all other cycles have length divisible by 8.

The next result is due to Wojda [36, 33], and it gives necessary and sufficient

conditions on the cardinality of the orbits of a k-complementing permutation.

Theorem 2.2.4 [36, 33] Let k and m be positive integers, let V be a finite set, and let

σ ∈ Sym(V ) with orbits O1,O2, . . . , Om. Let 2qi(2si +1) denote the cardinality of the

orbit Oi, for i = 1, 2, . . . , m. The permutation σ is a k-complementing permutation

if and only if, for every ` ∈ {1, 2, . . . , k} and for every decomposition

k = k1 + k2 + · · ·+ k`

of k, where kj = 2pj(2rj + 1) for nonnegative integers pj and rj, and for every subse-

quence of orbits

Oi1 ,Oi2 , . . . ,Oi`

such that kj ≤ |Oij | for j = 1, 2, . . . , `, there is a subscript j0 ∈ {1, 2, . . . , `} such that

pj0 < qij0
.

Given a permutation, it is difficult to determine whether Wojda’s condition holds.

In Theorem 2.2.5 we give a more transparent characterization of the orbit lengths of

k-complementing permutations which have order equal to a power of 2, and Corol-

lary 2.2.7 and Algorithm 2.4.4 will show how we can use our characterization to test

whether a finite permutation is a k-complementing permutation. In Section 2.4, we

will use the characterization of Theorem 2.2.5 to obtain Algorithm 2.4.3 for generat-

ing all of the self-complementary k-hypergraphs of order n, up to isomorphism, for

feasible k and n.
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2.2.2 New results

Theorem 2.2.5 below gives a characterization of the cycle types of k-complement-

ing permutations which have order equal to a power of 2 in terms of the binary

representation of k. We will show that this is sufficient to characterize all of the

k-complementing permutations, and that it leads to an algorithm for generating all

of the self-complementary k-hypergraphs of order n for feasible n and k.

Recall the definition of the binary representation of k, and the notation supp(b)

and n[m] from page 5 of Section 1.1.

Theorem 2.2.5 Let V be a finite set, let k be a positive integer such that k ≤ |V |, and

let b = (bm, bm−1, . . . , b2, b1, b0)2 be the binary representation of k. Let θ ∈ Sym(V )

be a permutation whose order is a power of 2. Given ` ∈ supp(b), let A` denote the

set of those points of V contained in cycles of θ of length < 2`, and let B` denote

the set of those points of V contained in cycles of θ of length > 2`. Then θ is a

k-complementing permutation if and only if, for some ` ∈ supp(b), V = A` ∪ B` and

|A`| < k[2`+1].

Proof: (⇒) Suppose that θ is a k-complementing permutation of order a power of

2. Then every cycle of θ has length a power of 2. If θ contained a cycle of length

2i for every i ∈ supp(b), then there would be an invariant set of θ of cardinality
∑

i∈supp(b) 2i = k, a contradiction. Hence, for some ` ∈ supp(b), θ does not contain a

cycle of length 2`.

Let

L = {` ∈ supp(b) : θ does not contain a cycle of length 2`}. (2.2.1)

Then V = A`∪B` for all ` ∈ L. It remains to show that |A`| < k[2`+1] for some ` ∈ L.

Suppose to the contrary that |A`| ≥ k[2`+1] for all ` ∈ L. Write |A`| =
∑`−1

i=0 ai2
i,

where ai is the number of cycles of θ of length 2i. Note that k[2`+1] =
∑`

i=0 bi2
i. Thus,
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by assumption, |A`| ≥
∑`

i=0 bi2
i for all ` ∈ L. Suppose L = {`1, `2, . . . , `t} where

`1 < `2 < · · · < `t.

• Claim A: Let x ∈ {1, 2, . . . , t}. If |A`j
| ≥ ∑`j

i=0 bi2
i for all j ∈ {1, 2, . . . , x},

then θ|A`x
has an invariant set of size

∑`x

i=0 bi2
i.

Proof of Claim A: The proof is by induction on x. First we will need some

notation. For any nonnegative integer i, let ai denote the number of cycles of θ

of length 2i. Then certainly
∑`j−1

i=0 ai2
i = |A`j

|, for j = 1, 2, . . . , t. Also, for any

sequence of integers â0, â1, . . . , â`j−1 such that 0 ≤ âi ≤ ai for 0 ≤ i ≤ `j − 1,

the sum
∑`j−1

i=0 âi2
i is the sum of the lengths of a collection of cycles of θ|A`j

,

and hence it is the size of an invariant set of θ|A`j
. Conversely, any invariant

set S of θ|A`j
corresponds to a collection of cycles of θ|A`j

whose lengths sum

to |S|, and hence there exists a sequence of integers â0, â1, . . . , â`j−1 such that

0 ≤ âi ≤ ai for 0 ≤ i ≤ `j − 1, and |S| = ∑`j−1
i=0 âi2

i.

Base Step: If x = 1 and |A`1| ≥
∑`1

i=0 bi2
i, then

|A`1| =
`1−1∑
i=0

ai2
i ≥

`1∑
i=0

bi2
i. (2.2.2)

By the definition of L in (2.2.1), it follows that ai ≥ bi for 0 ≤ i ≤ `1−1. Hence

(2.2.2) implies that
`1−1∑
i=0

(ai − bi)2
i ≥ 2`1

holds with ai − bi ≥ 0 for all i = 1, 2, . . . , `1 − 1. Thus by Lemma A.0.14 (see

Appendix), there is a sequence c0, c1, . . . , c`1−1 such that 0 ≤ ci ≤ (ai − bi) for

0 ≤ i ≤ `1 − 1, and
`1−1∑
i=0

ci2
i = 2`1 .

Now let âi = bi + ci. Then

0 ≤ âi = bi + ci ≤ bi + (ai − bi) = ai
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and hence

0 ≤ âi ≤ ai

for 0 ≤ i ≤ `1 − 1, and

`1−1∑
i=0

âi2
i =

`1−1∑
i=0

bi2
i +

`1−1∑
i=0

ci2
i =

`1−1∑
i=0

bi2
i + 2`1 =

`1∑
i=0

bi2
i.

Thus θ|A`1
has an invariant set of size

∑`1
i=0 bi2

i, as required.

Induction Step: Let 2 ≤ x ≤ t and assume that if |A`j
| ≥ ∑`j

i=0 bi2
i for

all j ∈ {1, 2, . . . , x − 1}, then θ|A`x−1
has an invariant set of size

∑`x−1

i=0 bi2
i.

Now suppose that |A`j
| ≥ ∑`j

i=0 bi2
i for all j ∈ {1, 2, . . . , x}. Then certainly

|A`j
| ≥ ∑`j

i=0 bi2
i for all j ∈ {1, 2, . . . , x − 1}, and so by the induction hypoth-

esis, θ|A`x−1
has an invariant set of size

∑`x−1

i=0 bi2
i. This implies that there is a

sequence of integers c0, c1, . . . , c`x−1−1 such that 0 ≤ ci ≤ ai for 0 ≤ i ≤ `x−1−1,

and
`x−1−1∑

i=0

ci2
i =

`x−1∑
i=0

bi2
i. (2.2.3)

Since |A`x| ≥
∑`x

i=0 bi2
j, we have

`x−1∑
i=0

ai2
i ≥

`x∑
i=0

bi2
i. (2.2.4)

Since `x−1 ∈ L, a`x−1 = 0, so (2.2.4) implies that

|A`x | =
`x−1∑
i=0

ai2
i =

`x−1−1∑
i=0

ai2
i +

`x−1∑

i=`x−1+1

ai2
i ≥

`x∑
i=0

bi2
i.

Hence by (2.2.3), we have

`x−1−1∑
i=0

(ai − ci)2
i +

`x−1∑

i=`x−1+1

ai2
i ≥

`x∑

i=`x−1+1

bi2
i.
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This implies that

`x−1−1∑
i=0

(ai − ci)2
i +

`x−1∑

i=`x−1+1

(ai − bi)2
i ≥ 2`x . (2.2.5)

By the definition of L in (2.2.1), we have ai − bi ≥ 0 for `x−1 + 1 ≤ i ≤ `x − 1.

Also, ai − ci ≥ 0 for 0 ≤ i ≤ `x−1 − 1. Thus (2.2.5) and Lemma A.0.14

with n = 2 (see Appendix) guarantee that there exists a sequence of integers

d0, d1, . . . , d`x−1 such that 0 ≤ di ≤ ai − ci for all i ∈ {0, 1, . . . , `x−1 − 1},
d`x−1 = 0, 0 ≤ di ≤ ai− bi for all integers i such that `x−1 + 1 ≤ i ≤ `x− 1, and

`x−1∑
i=0

di2
i = 2`x . (2.2.6)

Now define a sequence of integers â0, â1, . . . , â`x−1 by

âi =





ci + di, if 0 ≤ i ≤ `x−1 − 1

0, if i = `x−1

bi + di, if `x−1 + 1 ≤ i ≤ `x − 1

.

Now for i = 0, 1, . . . , `x−1 − 1, we have 0 ≤ di ≤ ai − c1, and thus 0 ≤ ci +

di ≤ ci + (ai − ci) = ai. Hence 0 ≤ âi ≤ ai for these i. Moreover, for each

integer i such that `x−1 + 1 ≤ i ≤ `x − 1, we have 0 ≤ di ≤ ai − bi, and thus

0 ≤ bi + di ≤ bi + (ai − b1) = ai. Hence 0 ≤ âi ≤ ai for these i also. Since

â`x−1 = 0, we conclude that 0 ≤ âi ≤ ai for i = 0, 1, . . . , `x − 1. Moreover,

`x−1∑
i=0

âi2
i =

`x−1−1∑
i=0

(ci + di) + 0 +
`x−1∑

i=`x−1+1

(bi + di)

=

`x−1−1∑
i=0

ci +
`x−1∑

i=`x−1+1

bi +
`x−1∑
i=0

di (since d`x−1 = 0)

=

`x−1∑
i=0

bi +
`x−1∑

i=`x−1+1

bi +
`x−1∑
i=0

di (by (2.2.3))
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=
`x−1∑
i=0

bi2
i + 2`x (by (2.2.6))

=
`x∑

i=0

bi2
i. (since b`x = 1)

Thus θ|A`x
has an invariant set of size

∑`x

i=0 bi2
i, as required.

Hence by mathematical induction, Claim A holds for all x ∈ {1, 2, . . . , t}.

Now applying Claim A with x = t, we observe that |A`j
| ≥ ∑`j

i=0 bi2
i for all

j ∈ {1, 2, . . . , t}. Hence θ|A`t
has an invariant set of size

∑`t

i=0 bi2
i. But since `t is the

largest element of L, θ|B`t
(and hence θ) contains a cycle of length 2` for all ` ∈ supp(b)

with `t < ` ≤ m, and hence θ contains an invariant set of size
∑m

i=0 bi2
i = k. This

contradicts the fact that θ is a k-complementing permutation.

We conclude that for some j ∈ {1, 2, . . . , t}, |A`j
| <

∑`j

i=0 bi2
i. For this j, set

` = `j. Then ` ∈ supp(b) and |A`| < k[2`+1], as required.

(⇐) Let θ ∈ Sym(V ) with order a power of 2 and suppose that, for some ` ∈ supp(b),

V = A` ∪ B` and |A`| < k[2`+1]. This implies that θ does not have an invariant set

of size k. Moreover, since the order of θ is a power of 2, for each odd integer j, θj

has the same cycle type as θ, and hence θj also has no invariant set of size k. Hence

Aθj 6= A for all odd integers j and all A ∈ V (k), and so Proposition 2.1.1 implies that

θ is a k-complementing permutation.

Theorem 2.2.5 together with the following lemma yields Corollary 2.2.7, which

gives a test to determine whether a given permutation in Sym(n) is a k-complement-

ing permutation.

Lemma 2.2.6 Let k be a positive integer.
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(1) Let s be a nonnegative integer. A permutation θ is a k-complementing permuta-

tion if and only if θ2s+1 is a k-complementing permutation.

(2) A self-complementary k-hypergraph has an antimorphism whose order is equal to

a power of 2.

Proof:

1. If θ ∈ Sym(V ) is a k-complementing permutation, then θ ∈ Ant(X) for some

self-complementary k-hypergraph X = (V, E), and so θ is a bijection from E to

EC and a bijection from EC to E. It follows that θ2s+1 ∈ Ant(X).

Conversely, suppose that θ2s+1 is a k-complementing permutation. Then Propo-

sition 2.1.1 guarantees that each orbit of θ2s+1 on V (k) has even cardinality.

Observe that each orbit of θ2s+1 on V (k) is contained in an orbit of θ on V (k).

Also, every k-subset in an orbit of θ on V (k) must certainly lie in an orbit of

θ2s+1 on V (k). Since the orbits of θ2s+1 on V (k) are pairwise disjoint, it follows

that every orbit of θ on V (k) is a union of pairwise disjoint orbits of θ2s+1 on

V (k), each of which has even cardinality. Hence every orbit of θ on V (k) has

even cardinality, and so Proposition 2.1.1 implies that θ is a k-complementing

permutation.

2. Let X be a self-complementary k-hypergraph, and let θ ∈ Ant(X). Proposi-

tion 2.1.1 guarantees that θ has even order, so |θ| = 2zs for some positive integer

z and some odd integer s. Since s is odd, part (1) implies that θs ∈ Ant(X),

and θs has order equal to a power of 2.

Thus Lemma 2.2.6(1) and Theorem 2.2.5 together yield the following character-

ization of k-complementing permutations.
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Corollary 2.2.7 Let k be a positive integer, let b be the binary representation of k,

and let V be a finite set. A permutation σ ∈ Sym(V ) is a k-complementing permu-

tation if and only if |σ| = 2i(2t + 1) for some integers t and i such that i ≥ 1 and

t ≥ 0, and θ = σ2t+1 satisfies the conditions of Theorem 2.2.5 for some ` ∈ supp(b).

In Algorithm 2.4.4, we will use the conditions of Corollary 2.2.7 to derive a

straightforward method to test whether a given θ ∈ Sym(V ) is a k-complementing

permutation.

The following corollary to Theorem 2.2.5 was first proved directly by Potočnik

and Šajna [24]. We will need to make use of this result in Chapter 5, in the proof of

Theorem 5.3.3.

Corollary 2.2.8 [24] Let ` be a positive integer, let k = 2` or k = 2` + 1, and let

n ≡ 1(mod 2`+1). Let X be a self-complementary k-hypergraph of order n. Let O2

be the set of elements of Ant(X) whose orders are powers of 2. Then every element

of O2 has exactly one fixed point and all other orbits have length divisible by 2`+1.

Proof: Let θ ∈ O2 and let b be the binary representation of k. Then supp(b) ⊆ {0, `}.
Now the conditions of Theorem 2.2.5 must hold for θ for some ˆ̀∈ supp(b). If these

conditions hold with ˆ̀= 0, then each cycle of θ has length equal to 2r for r > 0. But

this implies that n =≡ 0 (mod 2), contradicting the fact that n ≡ 1 (mod 2`+1).

Hence the conditions of Theorem 2.2.5 must hold for `. Thus V = A` ∪ B` and

|A`| < k[2`+1] = k < 2`+1. Since |B`| ≡ 0 (mod 2`+1) and n = |V | ≡ 1(mod 2`+1),

we must have |A| = 1. Thus θ has exactly one fixed point and all other orbits have

length divisible by 2`+1.
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2.3 Necessary and sufficient conditions on order

In 2007, Szymański and Wojda [32] solved the problem of the existence of a self-com-

plementary k-hypergraph of order n.

Theorem 2.3.1 [32] Let k and n be positive integer such that k ≤ n. A self-com-

plementary k-uniform hypergraph of order n exists if and only if
(

n
k

)
is even.

In this section, we give an alternative description of the condition that
(

n
k

)
is

even in terms of the binary representation of k (see Corollary 2.3.2) which is more

easily verified. In particular, this yields more transparent conditions on the order of

a self-complementary k-hypergraph when the rank k is a sum of consecutive powers

of 2.

Lemma 2.2.6(2) and Theorem 2.2.5 imply the following necessary and sufficient

conditions on the order of a self-complementary uniform hypergraph of rank k.

Corollary 2.3.2

Let k and n be positive integers, k ≤ n, and let b be the binary representation of k.

There exists a self-complementary k-hypergraph of order n if and only if

n[2`+1] < k[2`+1] for some ` ∈ supp(b). (2.3.1)

Proof: Suppose that there exists a self-complementary k-hypergraph X = (V, E).

Lemma 2.2.6(2) implies that there exists θ ∈ Ant(X) with order equal to a power

of 2. Thus Theorem 2.2.5 implies that we can partition V into disjoint sets A and

B such that A and B are unions of orbits of θ, and there exists ` ∈ supp(b) such

|A| < k[2`+1] and |B| ≡ 0 (mod 2`+1). Since n = |V | = |A| + |B|, it follows that

n[2`+1] < k[2`+1]. Hence (2.3.1) holds.

Conversely, suppose that (2.3.1) holds for some ` ∈ supp(b), say n = m2`+1 + j

for some j < k[2`+1]. Let V be a set of order n, and let θ be a permutation in Sym(V )

which has j fixed points and m cycles of length 2`+1. Then θ satisfies the conditions
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of Theorem 2.2.5 for `, and so θ is a k-complementing permutation. Thus there exists

a self-complementary k-hypergraph of order n in the θ-switching class of self-comple-

mentary hypergraphs on V .

In Appendix A, Lemma A.0.13, we show directly that condition (2.3.1) is equiv-

alent to Szymański and Wojda’s condition that
(

n
k

)
is even.

When k = 2` or k = 2` + 1, Corollary 2.3.2 yields the following result.

Corollary 2.3.3 Let ` be a positive integer.

1. If k = 2`, then there exists a self-complementary k-hypergraph of order n if and

only if n[2`+1] < k.

2. If k = 2` + 1, then there exists a self-complementary k-hypergraph of order n if

and only if n is even or n[2`+1] < k.

For example, there exists a self-complementary graph of order n if and only if

n ≡ 0 or 1 (mod 4), and there exists a self-complementary 3-hypergraph of order n if

and only if n ≡ 0, 1 or 2 (mod 4). In the case where k is a sum of consecutive powers

of 2, the condition of Corollary 2.3.2 holds for the largest integer in the support of

the binary representation of k, as the next result shows.

Corollary 2.3.4 Let r and ` be nonnegative integers, and suppose that k =
∑r

i=0 2`+i.

Then there exists a self-complementary k-hypergraph of order n if and only if n[2`+r+1] <

k.
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Proof: Suppose that there exists a self-complementary k-hypergraph of order n, and

let b be the binary representation of k. Then

supp(b) = {`, ` + 1, . . . , ` + r},

and so Corollary 2.3.2 guarantees that

n[2`+j+1] < k[2`+j+1] (2.3.2)

for some j ∈ {0, 1, 2, . . . , r}. If (2.3.2) holds for some j < r, then the fact that

n[2`+(j+1)+1] ≤ 2`+j+1 + n[2`+j+1]

implies that

n[2`+(j+1)+1] < 2`+j+1 + k[2`+j+1]. (2.3.3)

Now since 2`+j+1 + k[2`+j+1] = 2`+j+1 +
∑j

i=0 2`+i = k[2`+(j+1)+1], inequality (2.3.3)

implies that

n[2`+(j+1)+1] < k[2`+(j+1)+1],

and hence (2.3.2) also holds for j + 1. Thus, by induction on j, the fact that (2.3.2)

holds for some j ∈ {0, 1, . . . , r} implies that (2.3.2) holds for j = r. Hence n[2`+r+1] <

k[2`+r+1] = k.

Conversely, Corollary 2.3.2 guarantees that there exists a self-complementary k-

hypergraph of order n for every integer n such that n[2`+r+1] < k[2`+r+1] = k.

Corollary 2.3.5 Let ` be a positive integer and suppose that k = 2` − 1.

(1) There exists a self-complementary k-hypergraph of order n if and only if n[2`] < k.

(2) If n = 2r − 1 for some integer r ≥ `, there does not exist a self-complementary

k-hypergraph of order n.
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Proof: Since k = 2` − 1 =
∑`−1

i=0 2i, (1) follows directly from Corollary 2.3.4. If

n = 2r − 1 for r ≥ `, then n[2`] = 2` − 1 = k, and so (1) implies that there does not

exist a self-complementary k-hypergraph of order n. Hence (2) holds.

Corollary 2.3.6 If n = 2r − 2 for an integer r ≥ 2, then there exists a self-comple-

mentary k-hypergraph of order n if and only if k < n and k is odd.

Proof: Let b denote the binary representation of k. If k is odd, then 0 ∈ supp(b).

Since n is even, Corollary 2.3.2 implies that there exists a self-complementary k-hy-

pergraph of order n.

Conversely, suppose that k is even and k < n. Then since k < n, max{` : ` ∈
supp(b)} ≤ r, and so n[2`] = 2` − 2 for all ` ∈ supp(b). Since k is even, 2` − 2 ≥ k[2`],

and so n[2`] ≥ k[2`] for all ` ∈ supp(b). Thus Corollary 2.3.2 implies that there does

not exist a self-complementary k-hypergraph of order n.

2.4 Generating self-complementary hypergraphs

In this section we present Algorithm 2.4.3, which generates all self-complementary

k-hypergraphs of order n, up to isomorphism, and Algorithm 2.4.4, which determines

whether a given permutation in Sym(n) is a k-complementing permutation. Before we

present these algorithms, we will need some terminology and a couple of preliminary

algorithms and results.

If θ ∈ Sym(n) is the product of disjoint cycles of lengths n1, n2, . . . , nr with

n1 ≤ n2 ≤ · · · ≤ nr (including 1-cycles), then the r-tuple (n1, n2, . . . , nr) is called the

cycle type of θ. An integer partition of a positive integer n is a list of positive integers

(n1, n2, . . . , nr) such that n1 ≤ n2 ≤ · · · ≤ nr, and
∑r

i=1 ni = n. It is well known



2.4. Generating self-complementary hypergraphs 27

that two permutations in Sym(n) are conjugate if and only if they have the same

cycle type. Hence there is a natural correspondence between the conjugacy classes of

Sym(n), the cycle types of Sym(n), and the integer partitions of n.

Given an integer partition p = (n1, n2, . . . , nr) of n, let θ(p, n) denote the per-

mutation in Sym(n) with cycle type p, whose i-th cycle has the j-th entry equal to
∑i−1

t=0 ni + j, for all i ∈ {1, 2, . . . , r} and all j ∈ {1, 2, . . . , ni}, where n0 = 0. For

example, for the partition p = (2, 3, 3) of n = 8, we have θ(p, n) = (1 2)(3 4 5)(6 7 8).

Recall that for each k-complementing permutation θ in Sym(V ), Algorithm 2.1.2

will generate the set Hθ of all self-complementary k-hypergraphs on V for which

θ is an antimorphism, up to isomorphism. Lemma 2.2.6(2) guarantees that every

self-complementary k-hypergraph has an antimorphism which has order a power of

2, and so we can generate all of the self-complementary k-hypergraphs of order n,

up to isomorphism, by applying Algorithm 2.1.2 to each permutation in Sym(n)

satisfying the conditions of Theorem 2.2.5. However, Lemma 2.4.1 below shows that

we need only apply Algorithm 2.1.2 to a set of conjugacy class representatives of such

permutations.

Lemma 2.4.1 Two permutations θ and σ are conjugate in Sym(V ) if and only if

each hypergraph in Hθ is isomorphic to a hypergraph in Hσ.

Proof: Observe that if θ is an antimorphism of a k-hypergraph X = (V, E), and

σ = τ−1θτ is conjugate to θ, then σ is an antimorphism of Xτ = (V,Eτ ). Hence each

hypergraph X in Hθ is isomorphic to a hypergraph Xτ in Hσ. Conversely, if X and Y

are isomorphic self-complementary k-hypergraphs, say Xτ = Y , then if θ ∈ Ant(X)

it follows that τ−1θτ ∈ Ant(Y ), and so any two isomorphic self-complementary k-

hypergraphs have antimorphisms from the same conjugacy class.

Lemma 2.4.1 implies that in order to generate all of the self-complementary k-
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hypergraphs of order n up to isomorphism, it suffices to apply Algorithm 2.1.2 to

one permutation from each conjugacy class of permutations in Sym(n) satisfying the

conditions of Theorem 2.2.5. We will do this in Algorithm 2.4.3. First, we will need

some notation and a preliminary algorithm.

For a positive integer n, let P2(n) denote the set of integer partitions of n into

powers of 2. Note that a complete set of representatives of the conjugacy classes of

permutations in Sym(n) satisfying the conditions of Theorem 2.2.5 corresponds to

a subset of P2(n), and so we will make use of the set P2(n) in Algorithm 2.4.3. In

[15], Riha and James present an efficient algorithm for generating the set of integer

partitions of n with a fixed number m of parts from a given set S. This algorithm

can be applied with m parts from S = {2i : 2i ≤ n}, for each m = 1, 2, . . . , n, to

construct the set P2(n).

In Algorithm 2.4.2, we will describe an alternative method for generating the set

P2(n) for any positive integer n. For a positive integer r and two vectors w, v ∈ Zr,

we write w ≤ v if w is less than or equal to v with respect to the lexicographic, or

dictionary, ordering. We will use sort(v) to denote the vector obtained from v by

sorting its coordinates in non-decreasing order, and concatenate(v, w) to denote the

vector (v1, v2, . . . , vr, w1, w2, . . . , wr) ∈ Z2r obtained by concatenating the vectors v

and w. Note that sort(v) can be obtained from v using any of the well-known sorting

algorithms, such as the Quicksort algorithm developed by Hoare in [13].

Algorithm 2.4.2 Let n be a positive integer and let c be the binary representation

of n. Let supp(c) = {`1, `2, . . . , `t}, where `1 < `2 < · · · < `t.

(1) Using steps (A) and (B) below recursively, construct the sets P2(2
i) recursively

for i = 0, 1, . . . , `t.

(A) Set P2(2
0) := {(1)}. Set i := 1.

(B) Repeat steps (I)-(III) below while i ≤ `t.
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(I) Set P := P2(2
i−1)× P2(2

i−1). Set P2(2
i) := {(2i)}.

Repeat steps (a)-(b) below while P 6= ∅.
(a) Choose (p, q) ∈ P . If p ≤ q, then

set P2(2
i) := P2(2

i) ∪ {sort(concatenate(p, q))}.
(b) Set P := P \ {(p, q)}. Return to step (a).

(II) Return P2(2
i).

(III) Set i := i + 1. Return to step (I).

(2) Using steps (A),(B), and (C) below, construct the set P2(n).

(A) Set P := P2(2
`1)× P2(2

`2)× · · · × P2(2
`t). Set P2(n) := ∅.

(B) Repeat steps (I)-(II) below while P 6= ∅.

(I) Choose (p1, p2, . . . , pt) ∈ P .

Set P2(n) := P2(n) ∪ {sort(concatenate(p1, p2, . . . , pt))}.
(II) Set P := P \ {(p1, p2, . . . , pt)}. Return to step (I).

(C) Return P2(n).

Lemma A.0.14 guarantees that every element in P2(2
i) (except for (2i) itself)

is the concatenation of two elements in P2(2
i−1). Hence steps (1)(A)-(1)(B) of Al-

gorithm 2.4.2 generate all of P2(2
i), for i = 1, 2, . . . , `t. Also, the uniqueness of the

binary representation of n and Lemma A.0.14 together guarantee that every element

if P2(n) is the concatenation of the coordinates of an element in P2(2
`1)× P2(2

`2)×
. . .× P2(2

`t). Hence steps (2)(A)-(2)(C) of Algorithm 2.4.2 generate all of P2(n).

We are ready to state Algorithm 2.4.3, which generates all self-complementary k-

hypergraphs of order n, up to isomorphism, without prior input of a k-complementing

permutation in Sym(n).
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Algorithm 2.4.3 Let n and k be positive integers, k ≤ n. Let b be the binary

representation of k, and let

L := {` ∈ supp(b) : n[2`+1] < k[2`+1]}.

(1) Set H := ∅. If L = ∅, go to step (4). Otherwise, go to step (2).

(2) Construct the set P2(n) using Algorithm 2.4.2.

Set P := P2(n).

Using steps (A) and (B) below, construct a set S of representatives of the con-

jugacy classes of permutations in Sym(n) which satisfy the conditions of Theo-

rem 2.2.5 for some ` ∈ supp(b).

(A) Set S := ∅. Repeat steps (a)-(b) below while P 6= ∅.

(a) Choose p = (n1, n2, . . . , nr) ∈ P and set

Lp := {` ∈ L : ni 6= 2` for 1 ≤ i ≤ r}.

Repeat step (i) below while Lp 6= ∅.
(i) Choose ` ∈ Lp. Let n0 = 0, and let s be the largest integer such

that ni < 2` for all i ≤ s.

If
∑s

i=0 ni <
∑`

i=0 bi2
i, set S := S ∪ {θ(p, n)} and set Lp = ∅.

Otherwise, set Lp := Lp \ {`}.
(b) Set P := P \ {p}. Return to step (a).

(B) Return S.

(3) Repeat step (A) below while S 6= ∅.

(A) Choose θ ∈ S and apply Algorithm 2.1.2 to construct Hθ.

Set H := H ∪Hθ.

Set S := S \ {θ}.
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(4) Return H.

The following algorithm determines whether or not a permutation θ ∈ Sym(V )

is a k-complementing permutation.

Algorithm 2.4.4 Let k be a positive integer, let b be the binary representation of

k, and let V be a finite set.

Input: θ ∈ Sym(V )

Output :





YES, if θ is a k-complementing permutation

NO, otherwise

.

1. If |θ| is odd, output NO and quit.

Otherwise, go to step (2).

2. Write |θ| = 2i(2t + 1) for some positive integer i.

Let θ̂ = θ2t+1, and let p = (n1, n2, . . . , nr) be the cycle type of θ̂. Set

Lp := {` ∈ supp(b) : ni 6= 2` for all i ∈ {1, 2, . . . , r}}.

If Lp = ∅, output NO and quit.

Otherwise, go to step (3).

3. Choose ` ∈ Lp.

Let n0 = 0, and let s be the largest integer such that ni < 2` for all i ≤ s. If
∑s

i=0 ni <
∑`

i=0 bi2
i, output YES and quit.

Otherwise, go to step (4).

4. Set Lp := Lp \ {`}. If Lp = ∅, output NO and quit.

Otherwise, return to step (3).

The method of Algorithm 2.4.4 for testing whether θ is a k-complementing per-

mutation relies on the characterization of k-complementing permutations given in

Corollary 2.2.7, which is an alternative to Wojda’s characterization in Theorem 2.2.4.



Chapter 3

Regular self-complementary

hypergraphs

In this chapter, we examine the orders of t-subset-regular self-complementary k-

uniform hypergraphs.

3.1 Necessary conditions on order

We find necessary conditions on the order of a t-subset-regular self-complementary

k-hypergraph in terms of the binary representation of the rank k. In Section 3.1.1 we

will present the results to date, and in Section 3.1.2 we will reformulate the previously

obtained necessary conditions on the order of these structures in terms of the binary

representation of the rank k.

3.1.1 Previous results

We state the known necessary conditions on the order of t-subset-regular self-com-

plementary k-hypergraphs.

Clearly, if a self-complementary k-hypergraph X = (V,E) of order |V | = n exists,

32
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then {X,XC} is a partition of V (k) into two sets of equal size |V (k)|/2 =
(

n
k

)
/2, and

consequently
(

n
k

)
must be even. If X is also t-subset-regular, we obtain additional

necessary conditions, which are given in Theorem 3.1.1. This result was first stated

by Hartman [12] in the language of large sets of t-designs. The proof is included here

for the sake of completeness.

Theorem 3.1.1 [12] Suppose X is a t-subset-regular self-complementary k-hyper-

graph of order n, where 0 < t < k < n. Then

(
n− i

k − i

)
≡ 0 (mod 2) for 0 ≤ i ≤ t. (3.1.1)

Proof: Let T be any t-subset of V = V (X). Clearly T is contained in exactly
(

n−t
k−t

)

sets in V (k). Since X is self-complementary, the t-valency of X is equal to the t-

valency of XC , and these t-valencies must sum to
(

n−t
k−t

)
. Hence the t-valency of X is

(
n−t
k−t

)
/2.

Now let i ∈ {0, 1, . . . , t}, and let I be any i-subset of V . We will count the

number of edges of X containing I. We know that the i-subset I is contained in

exactly
(

n−i
t−i

)
t-subsets of V , and each t-subset of V is contained in exactly

(
n−t
k−t

)
/2

edges of X. Since each edge of X contains
(

k−i
t−i

)
t-subsets which contain the i-subset

I, it follows that I lies in exactly

1

2

(
n− t

k − t

)(
n−i
t−i

)
(

k−i
t−i

) =
1

2

(
n− i

k − i

)

edges of X, which is independent of the choice of I. Hence X is i-subset-regular, with

i-valency
(

n−i
k−i

)
/2. Since this number must be an integer, and i was chosen arbitrarily,

we conclude that the (3.1.1) holds.

The proof of Theorem 3.1.1 actually shows that a t-subset-regular self-comple-

mentary hypergraph is necessarily i-subset-regular, for all positive integers i ≤ t.
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The necessary conditions (3.1.1) of Theorem 3.1.1 are stated alternatively in

Theorem 3.1.2. The equivalence of these two statements was proved by Khosrovshahi

and Tayfeh-Rezaie [17], also in the language of large sets of t-designs.

Theorem 3.1.2 [17] Let t, k and n be positive integers such that t < k ≤ n. If there

exists a t-subset-regular self-complementary k-hypergraph of order n, then there exists

a positive integer a such that max{i : 2i | k} < a ≤ min{i : 2i > k} and

n[2a] ∈ {t, t + 1, . . . , k[2a] − 1}. (3.1.2)

3.1.2 New results

In this section, we will reformulate the known necessary conditions on the order of a t-

subset-regular self-complementary k-hypergraph in terms of the binary representation

of the rank k. This yields more transparent conditions on the order n in the case

where k is a sum of consecutive powers of 2.

In Theorem 3.1.4, we refine the result of Theorem 3.1.2 slightly to show that

(3.1.2) holds for an integer a such that a − 1 lies in the support of the binary rep-

resentation of k. It should be noted that Potočnik and Šajna first observed this

refinement in the case where the rank k has the form k = 2` or k = 2` + 1 [24].

First we need a preliminary lemma.

Lemma 3.1.3 Let t, k and n be positive integers such that t < k ≤ n. Let b be the

binary representation of k. There exists a positive integer a such that max{i : 2i |
k} < a ≤ min{i : 2i > k} and

n[2a] ∈ {t, t + 1, . . . , k[2a] − 1} (3.1.3)

if and only if there exists ` ∈ supp(b) such that (3.1.3) holds with a = ` + 1.

Proof: (⇐) If ` ∈ supp(b) then max{i : 2i | k} < ` + 1 ≤ min{i : 2i > k}. Hence if

(3.1.3) holds with a = ` + 1 for some ` ∈ supp(b), then certainly (3.1.3) holds for an
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integer a in the range max{i : 2i | k} < ` + 1 ≤ min{i : 2i > k}.

(⇒) Suppose that there exists an integer a such that max{i : 2i | k} < a ≤ min{i :

2i > k} and (3.1.3) holds. If a − 1 ∈ supp(b), then set ` = a − 1 and we are done.

Hence we may assume that a− 1 6∈ supp(b).

Now if i 6∈ supp(b) for all i such that 0 ≤ i ≤ a− 1, then k[2a] =
∑a−1

i=0 bi2
i = 0,

and so as t ≥ 1, (3.1.3) implies that n[2a] ∈ ∅, giving a contradiction. Hence we must

have supp(b) ∩ {1, 2, . . . , a− 1} 6= ∅. Set

` = max{i : i ∈ supp(b) ∩ {1, 2, . . . , a− 1}}

and observe that ` < a − 1. Then k[2a] =
∑a−1

i=0 bi2
i =

∑`
i=0 bi2

i = k[2`+1], and so

(3.1.3) implies that

n[2a] ∈ {t, t + 1, . . . , k[2`+1] − 1}. (3.1.4)

Now (3.1.4) implies that n[2a] < 2`+1. Since ` + 1 < a, it follows that n[2`+1] = n[2a],

and so (3.1.4) implies that

n[2`+1] ∈ {t, t + 1, . . . , k[2`+1] − 1}.

Since ` ∈ supp(b), this completes the proof.

Theorem 3.1.4 Let k be a positive integer and let b = (bm, bm−1, . . . , b2, b1, b0)2 be

the binary representation of k. Let t be an integer such that 1 ≤ t < k. If there exists

a t-subset-regular self-complementary k-hypergraph, then

n[2`+1] ∈ {t, t + 1, . . . , k[2`+1] − 1} (3.1.5)

for some ` ∈ supp(b).

Proof: If there exists a t-subset-regular self-complementary k-hypergraph, then by

Theorem 3.1.2, there exists a positive integer a such that (3.1.3) holds. Hence (3.1.5)
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follows from Lemma 3.1.3.

Corollary 3.1.5 Let ` be a positive integer, let k = 2` or k = 2` + 1, and let t be

an integer such that 1 ≤ t < k. If there exists a t-subset-regular self-complementary

k-hypergraph of order n, then n[2`+1] ∈ {t, t + 1, . . . , k − 1}.

Proof: If there exists a t-subset-regular self-complementary k-hypergraph of or-

der n, then Theorem 3.1.4 implies that condition (3.1.5) holds for some ˆ̀ in the

support of the binary representation b of k. Since t ≥ 1, for ˆ̀ = 0 we have

{t, t + 1, . . . , k[2ˆ̀+1] − 1} = ∅. Hence condition (3.1.5) must hold for some nonzero

element of supp(b). Since k ∈ {2`, 2` + 1}, the only nonzero element in supp(b) is `.

Hence (3.1.5) holds for `, and so n[2`+1] ∈ {t, t + 1, . . . , k[2`+1] − 1}. Since k[2`+1] = k

for all k ∈ {2`, 2` + 1}, the result follows.

In the case where k is a sum of consecutive powers of 2, if condition (3.1.5) of

Theorem 3.1.4 holds, then it holds for the largest integer in the support of the binary

representation of k, as the next corollary shows.

Corollary 3.1.6 Let r and ` be nonnegative integers, and suppose that k =
∑r

i=0 2`+i.

If there exists a t-subset-regular self-complementary k-hypergraph of order n, then

n[2`+r+1] ∈ {t, t + 1, . . . , k − 1}.

Proof: Let b denote the binary representation of k. Then

supp(b) = {`, ` + 1, . . . , ` + r},

and so Theorem 3.1.4 guarantees that

n[2`+j+1] ∈ {t, t + 1, . . . , k[2`+j+1] − 1} (3.1.6)
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for some j ∈ {0, 1, . . . , r}. Suppose that j < r. Since

n[2`+(j+1)+1] ≤ 2`+j+1 + n[2`+j+1]

and

n[2`+(j+1)+1] ≥ n[2`+j+1],

condition (3.1.6) implies that

t ≤ n[2`+(j+1)+1] < 2`+j+1 + k[2`+j+1]. (3.1.7)

Now since 2`+j+1 + k[2`+j+1] = 2`+j+1 +
∑j

i=0 2`+i = k[2`+(j+1)+1], inequalities (3.1.7)

imply that

t ≤ n[2`+(j+1)+1] < k[2`+(j+1)+1],

and hence n[2`+(j+1)+1] ∈ {t, t + 1, . . . , k[2`+(j+1)+1] − 1}. Thus for j < r, we have that

n[2`+j+1] ∈ {t, t + 1, . . . , k[2`+j+1] − 1}

implies

n[2`+(j+1)+1] ∈ {t, t + 1, . . . , k[2`+(j+1)+1] − 1}.

It follows that

n[2`+r+1] ∈ {t, t + 1, . . . , k[2`+r+1] − 1}.

Since k[2`+r+1] = k, this implies that

n[2`+r+1] ∈ {t, t + 1, . . . , k − 1}

as claimed.

Corollary 3.1.7 Let ` be a positive integer, let k = 2` − 1 and let t be a positive

integer such that t < k. If there exists a t-subset-regular self-complementary k-hyper-

graph of order n, then n[2`] ∈ {t, t + 1, . . . , k − 1}.



3.2. Sufficient conditions on order 38

Proof: Since k = 2`− 1 =
∑`−1

i=0 2i, this result follows directly from Corollary 3.1.6.

3.2 Sufficient conditions on order

In this section, we show that the necessary conditions on the order of a t-subset-

regular self-complementary k-hypergraph given in Theorem 3.1.2 are sufficient in

certain cases.

3.2.1 Previous results

The necessary conditions of Theorem 3.1.2 have been shown to be sufficient for all t

in the cases where k ∈ {2, 3}. Rao handled the case where k = 2 [27], Potočnik and

Šajna handled the case where k = 3 and t = 1 [23], and Knor and Potočnik handled

the case where k = 3 and t = 2 [18]. Thus the condition of Theorem 3.1.2 is both

necessary and sufficient when k ∈ {2, 3}, as the following result states.

Theorem 3.2.1 Let n be a positive integer.

(1) [27] There exists a regular self-complementary graph of order n if and only if n

is congruent to 1 modulo 4.

(2) [23] There exists a 1-subset-regular self-complementary 3-hypergraph of order n

if and only if n is congruent to 1 or 2 modulo 4.

(3) [18] There exists a 2-subset-regular self-complementary 3-hypergraph of order n

if and only if n is congruent to 2 modulo 4.
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3.2.2 New results

In this section, we prove that a 1-subset-regular self-complementary k-hypergraph of

order n exists for every integer n satisfying the necessary conditions of Theorem 3.1.2.

First we will need some notation.

In this section, we will denote the vertex set and edge set of a self-complementary

k-hypergraph X by V(X) and E(X), respectively. Also, we will denote the valency

val1X({v}) defined on page 3 of Section 1.1 by valX(v). Let X = (V , E) be a k-

hypergraph and let θ ∈ Sym(V). Then Xθ denotes the hypergraph (V , Eθ), where

Eθ = {Eθ : E ∈ E} and Eθ = {vθ : v ∈ E}. For a subset P of the orbits of θ on V(k),

let U(P) =
⋃
O∈P O. For a subset S ⊆ V (k) and a vertex v ∈ V , let setvalS(v) denote

the number of edges of S containing v, and let SC denote the complement of S in

V(k). That is, SC = V(k) \ S.

We will often make use of the following lemma.

Lemma 3.2.2 Suppose that X = (V , E) is a self-complementary k-hypergraph.

(1) X is 1-subset-regular if and only if valX(v) = valXC (v) for all v ∈ V.

(2) If V = {∞} ∪ Zn and θ = (∞)(0 1 . . . (n− 1)) ∈ Ant(X) for an even positive

integer n, then X is 1-subset-regular if and only if valX(0) = valXC (0).

Proof:

(1) If valX(v) = valXC (v), then

valX(v) =
1

2
(valX(v) + valXC (v)) =

1

2
(setvalV(k)(v)) =

1

2

(|V| − 1

k − 1

)
,

which is independent of the choice of v ∈ V . Thus X is 1-subset-regular. Con-

versely, if X is 1-subset-regular, then since X ∼= XC , the hypergraph XC is also

1-subset-regular and has the same 1-valency as X. Thus valX(v) = valXC (v) for

all v ∈ V .
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(2) If X is 1-subset-regular, then as 0 ∈ V , valX(0) = valXC (0) by part (1).

Conversely, suppose that valX(0) = valXC (0). Observe that for any orbit O of

θ on V(k), an element x ∈ Zn lies in c edges of O ∩ E if and only if (x − 1)[n]

lies in c edges of O ∩ EC , which holds if and only if (x − 2)[n] lies in c edges

of O ∩ E . This implies that valX(x) = valXC (y) whenever x 6≡ y (mod 2), and

valX(x) = valX(y) whenever x ≡ y (mod 2). Now since valX(0) = valXC (0), for

x even and y odd, we have

valX(x) = valX(0) = valXC (0) = valX(y).

Hence valX(x) = valX(y) for all x, y ∈ Zn. Moreover, since θ ∈ Ant(X) and θ

fixes ∞, we must also have valX(∞) = valXC (∞). Hence valX(v) is independent

of the choice of v ∈ V , and so X is 1-subset-regular.

In Lemma 3.2.5 we will prove that the necessary condition (3.1.3) in Theo-

rem 3.1.2 on the order n of a self-complementary k-hypergraph is sufficient by in-

duction on the congruence class of n modulo 2a. In Lemma 3.2.4 we will handle the

base case where n ≡ 1 (mod 2a), that is, n = m2a + 1 for some positive integer

m. We will need to make use of the following lemma, which handles the case where

m = 1.

For a positive integer n, a subset A of Zn, and an element b of Zn, let A + b

denote the set {(a + b)[n] : a ∈ A}.

Lemma 3.2.3 Let k and a be positive integers such that a ≥ 2 and 2 ≤ k < 2a. Let

V = {∞} ∪ Z2a, where ∞ 6∈ Z2a. There exists a 1-subset-regular self-complementary

k-hypergraph on V with antimorphism

θ = (∞)(0 1 2 · · · (2a − 1)).
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Proof: First we will fix an integer r such that 1 ≤ r < 2a and examine the structure

of the orbits of θ on Z(r)
2a . In particular, we will examine how the number of even and

odd elements of E ∈ Z(r)
2a affect the valency of 0 in the orbit of θ on Z(r)

2a containing

E.

We can write r = 2zM for some integer z such that 0 ≤ z ≤ a − 1 and some

odd positive integer M . Let O be an orbit of θ on Z(r)
2a . Then O has length 2a−x for

some x such that 0 ≤ x ≤ z. For x ∈ {0, 1, . . . , z}, we will define a partition of the

set {0, 1, 2, . . . , 2a − 1} into 2x subsets Sx
0 , Sx

1 , Sx
2 , . . . , Sx

2x−1 of consecutive integers,

each of length 2a−x. For each w ∈ {0, 1, . . . , 2x − 1}, set Sx
w := {w2a−x + v : v ∈

{0, 1, . . . , 2a−x − 1}}. Then Sx
w = Sx

0 + w2a−x. If O has length 2a−x, any edge

E ∈ O contains exactly r/2x elements from each subset Sx
w in the partition, and

E ∩ Sx
w must be a translation of E ∩ Sx

0 , for all w = 0, 1, . . . , 2x − 1. In particular

E∩Sx
w = E∩Sx

0 +w2a−x. Now if E∩Sx
0 contains i even elements and j odd elements,

then Eθ∩Sx
0 contains j even elements and i odd elements. Hence, for any orbit O of θ

on Z(r)
2a of length 2a−x, there exist nonnegative integers i and j such that i+ j = r/2x,

and every edge of O contains exactly i even elements and j odd elements of Sx
0 , or

vice versa. Moreover, if E ∈ O and E contains i even and j odd elements of Sx
0 ,

then 0 lies in exactly i elements of the sequence E,Eθ2
, Eθ4

, . . . , Eθ2a−x−2
, and 0 lies

in exactly j = r/2x − i elements of the sequence Eθ1
, Eθ3

, Eθ5
, . . . , Eθ2a−x−1

.

Now for x ∈ {0, 1, . . . , z} and i ∈ {0, 1, . . . , r/2x+1}, and j = r/2x − i, let

Ex
i,j denote the set of orbits of θ on Z(r)

2a of length 2a−x whose edges contain i even

and j odd elements in the set Sx
0 , or which contain j even and i odd elements

of Sx
0 . For each O ∈ Ex

i,j, choose an edge E ∈ O. If the number of even ele-

ments of E does not exceed the number of odd elements of E, colour the edges

in the sequence E, Eθ2
, Eθ4

, . . . , Eθ2a−x−2
red and colour the edges in the sequence

Eθ1
, Eθ3

, Eθ5
, . . . , Eθ2a−x−1

blue. If E has more even entries than odd entries, colour

the edges in the sequence E, Eθ2
, Eθ4

, . . . , Eθ2a−x−2
blue and colour the edges in the

sequence Eθ1
, Eθ3

, Eθ5
, . . . , Eθ2a−x−1

red. For any subset S of Z(r)
2a , let Sred and Sblue
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denote the set of red and blue edges in S, respectively.

Now since i ≤ j, for each orbit O ∈ Ex
i,j we have

setvalOblue
(0)− setvalOred

(0) = j − i.

Let Êr be a subset of Z(r)
2a which contains the red edges from exactly

⌊∣∣Ex
i,j

∣∣ /2
⌋

orbits of Ex
i,j, and the blue edges from the remaining orbits of Ex

i,j, for all 0 ≤ x ≤ z,

and for all i, j such that 0 ≤ i ≤ r/2x+1 and j = r/2x − i. If
∣∣Ex

i,j

∣∣ is even, say
∣∣Ex

i,j

∣∣ = 2ν for a positive integer ν, then

setvalU(Ex
i,j∩Êr)(0)− setvalU(Ex

i,j∩ÊC
r )(0) = (νi + νj)− (νi + νj) = 0.

If
∣∣Ex

i,j

∣∣ is odd, say
∣∣Ex

i,j

∣∣ = 2ν − 1 for a positive integer ν, then

setvalU(Ex
i,j∩Êr)(0)− setvalU(Ex

i,j∩ÊC
r )(0)

=((ν − 1)i + νj)− (νi + (ν − 1)j)

=j − i.

Now if x < z, then i + j = r/2x = 2z−xM is even, which implies that j − i is even.

On the other hand, if x = z, then i + j = r/2x = r/2z = M is odd, which implies

that j − i is odd.

• Claim I: Suppose that 0 ≤ i < j. For a fixed integer r = 2zM such that M is

odd and 1 ≤ r < 2a, exactly one of the sets Ez
i,j of orbits of θ on Z(r)

2a has odd

cardinality.

• Proof of Claim I: First, note that the set Sz
0 contains exactly 2a−z−1 odd

elements and 2a−z−1 even elements. Thus for j > 2a−z−1, we have Ez
i,j = ∅,

which has even cardinality. Hence we need only consider the case where 0 ≤
i < j ≤ 2a−z−1.

We will count the number of orbits in Ez
i,j where i and j are nonnegative integers

such that i < r/2z+1 and i + j = r/2z = M . The number of ways to choose i
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even elements and j odd elements from the set Sz
0 is

(
2a−z−1

i

)(
2a−z−1

j

)
, which is

also equal to the number of ways to choose i odd elements and j even elements

from this set. Hence the number of edges which lie in U(Ez
i,j) is 2

(
2a−z−1

i

)(
2a−z−1

j

)
.

Since each orbit of Ez
i,j has length 2a−z, the number of orbits in Ez

i,j is

∣∣Ez
i,j

∣∣ =
1

2a−z−1

(
2a−z−1

i

)(
2a−z−1

j

)
. (3.2.1)

Case 1: z = a − 1. In this case we have r = 2a−1M < 2a for odd M , which

implies that M = 1 and r = 2a−1. Since i + j = r/2z = 2a−1/2a−1 = 1 and

i < j, we must have i = 0 and j = 1, and so

∣∣Ez
i,j

∣∣ =
∣∣Ea−1

0,1

∣∣ =
1

20

(
20

0

)(
20

1

)
= 1,

which is odd.

Case 2: z < a − 1. In this case, since i + j = M is odd, and the cardi-

nality in (3.2.1) is an integer, Lemma A.0.15 implies that
∣∣Ez

i,j

∣∣ is odd if and

only if i ∈ {0, 2a−z−1} or j ∈ {0, 2a−z−1}. We will show that exactly one of these

situations occurs for i < j.

Since 0 ≤ i < j ≤ 2a−z−1, it follows that j 6= 0 and i 6= 2a−z−1. Hence

we need only check that exactly one of the conditions i = 0 and j = 2a−z−1

hold. Since z < a − 1, we must have r 6= 2a−1. Suppose r < 2a−1. Then if

j = 2a−z−1, we have i = r/2z − j = r/2z − 2a−z−1 < 2a−z−1 − 2a−z−1 = 0,

contradicting the assumption that i ≥ 0. However, there are edges such that

i = 0 and j = r/2z < 2a−1/2z = 2a−z−1. On the other hand, if r > 2a−1, then

if i = 0, we have j = r/2z > 2a−1/2z = 2a−z−1, and so j > 2a−z−1, giving a

contradiction. However, there are edges such that j = 2a−z−1, for in this case

i = r/2z − j = r/2z − 2a−z−1 > 2a−1/2z − 2a−z−1 = 0, so 0 < i < 2a−z−1.

We have shown that j 6= 0, i 6= 2a−z−1, and that if r < 2a−1 then j 6= 2a−z−1
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but there exist orbits with i = 0 and j = r/2z < 2a−z−1, and that if r > 2a−1

then i 6= 0 but there exist orbits with j = 2a−z−1 and i = r/2z − j > 0.

Thus exactly one of the two situations i = 0 and j = 2a−z−1 occurs for i < j,

and neither of the two situations i = 2a−z−1 and j = 0 can occur. Thus if

z < a − 1, exactly one of
∣∣∣Ez

0,r/2z

∣∣∣ and
∣∣∣Ez

(r/2z−2a−z−1),2a−z−1

∣∣∣ is odd, and
∣∣Ez

i,j

∣∣ is

even for all other feasible pairs i, j. This completes the proof of Claim I.

Claim I and the comments preceding it imply that

setvalÊr
(0)− setvalÊC

r
(0) is odd

for all integers r such that 1 ≤ r < 2a. Now fix an integer k such that 2 ≤ k < 2a.

Then 1 ≤ k − 1 < 2a, and so

setvalÊk∪Êk−1
(0)− setvalÊC

k ∪ÊC
k−1

(0) (3.2.2)

=
(
setvalÊk

(0)− setvalÊC
k
(0)

)
+

(
setvalÊk−1

(0)− setvalÊC
k−1

(0)
)

is even.

Now we will find subsets E ′k−1 ⊆ Z(k−1)
2a and E ′k ⊆ Z(k)

2a which are related to

Êk−1 and Êk, but for which the even quantity in (3.2.2) is bounded. Now for each

r ∈ {k − 1, k}, if r = 2zM , then for all integers x, i and j such that 0 ≤ x ≤ z,

0 ≤ i ≤ r/2x+1, and j = r/2x − i, we define λr(i, j, x) as

λr(i, j, x) = setvalU(Ex
i,j∩Êr)(0)− setvalU(Ex

i,j∩ÊC
r )(0) = j − i.

Note that 0 ≤ j − i ≤ r. Thus setvalÊr
(0)− setvalÊC

r
(0) is equal to the sum of a set

Ar of nonnegative integers for

Ar = {λr(i, j, x) : 0 ≤ x ≤ z, 0 ≤ i ≤ r/2x+1, j = r/2x − i},

and each λ ∈ Ar satisfies 0 ≤ λ ≤ r. Hence Lemma A.0.16 implies that there is a

function v : Ar → {−1, 1} such that 0 ≤ ∑
λ∈Ar

λv(λ) ≤ r.
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Now form a subset E ′r of Z(r)
2a from Êr by swapping red edges for blue edges, and

vice versa, in Ex
i,j ∩ Êr whenever v(λr(i, j, x)) = −1. Then setvalE ′r(0)− setval(E ′r)C (0)

has the same parity as setvalÊr
(0)− setvalÊC

r
(0). Moreover,

setvalE ′r(0)− setval(E ′r)C (0) =
∑

λ∈Ar

λv(λ)

and so

0 ≤ setvalE ′r(0)− setval(E ′r)C (0) ≤ r.

Thus

setvalE ′k∪E ′k−1
(0)− setval(E ′k)C∪(E ′k−1)C (0) (3.2.3)

=
(
setvalE ′k(0)− setval(E ′k)C (0)

)
+

(
setvalE ′k−1

(0)− setval(E ′k−1)C (0)
)

is equal to a nonnegative even number 2µ such that 2µ ≤ 2k− 1. But 2µ is even and

2k − 1 is odd, so we must have 2µ ≤ 2k − 2, which implies that 0 ≤ µ ≤ k − 1.

Case 1: 2 ≤ k ≤ 2a−1. Since k or k − 1 is even, it follows that r − µ is even

for some r ∈ {k, k − 1}. Fix this r. Then the system

−i + j = µ

i + j = r

has an integer solution i = (r − µ)/2, j = (r + µ)/2. Also, since 0 ≤ µ ≤ r, we are

guaranteed that 0 ≤ i, j ≤ r, and since r ≤ k ≤ 2a−1 we also have 0 ≤ i, j ≤ 2a−1. For

this r there is an orbit O ∈ E0
i,j of θ on Z(r)

2a of full length 2a−0 such that E ′r contains

the red edges of O, and

setvalOblue
(0)− setvalOred

(0) = j − i = µ.

Let Ek−1 ∪ Ek be the set of edges in Z(k−1)
2a ∪ Z(k)

2a obtained from E ′k−1 ∪ E ′k by

swapping red edges for blue edges in the orbit O. Then (3.2.3) implies that

setvalEk∪Ek−1
(0)− setvalEC

k ∪EC
k−1

(0)
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=
(
setvalE ′k∪E ′k−1

(0)− setval(E ′k)C∪(E ′k−1)C (0)
)
− 2µ

= 2µ− 2µ = 0. (3.2.4)

Finally, define Xk to be the hypergraph with vertex set V = Z2a ∪{∞} and edge

set E = Ek ∪ {E ∪ {∞} : E ∈ Ek−1}. Since θ maps red edges onto blue edges within

each orbit, and vice versa, it follows that θ ∈ Ant(Xk), and so Xk is self-comple-

mentary. Moreover, (3.2.4) implies that valXk
(0) = valXC

k
(0), and so Lemma 3.2.2(2)

guarantees that Xk is 1-subset-regular.

Case 2: 2a−1 < k < 2a. In this case let k̂ = 2a − (k − 1). Then 2 ≤ k̂ ≤ 2a−1

and so by Case 1 there exists a 1-subset-regular self-complementary k̂-hypergraph

Xk̂ on V with antimorphism θ. Let Fk̂ denote the set of edges of Xk̂ which do not

contain ∞, and let

Fk̂−1 = {E \ {∞} : E ∈ E (Xk̂) ,∞ ∈ E} .

Since Xk̂ is 1-subset-regular and self-complementary, it follows that

setvalFk̂∪Fk̂−1
(0) = setvalFC

k̂
∪FC

k̂−1
(0). (3.2.5)

Let

Ek−1 = {Z2a \ E : E ∈ Fk̂}

and

Ek = {Z2a \ E : E ∈ Fk̂−1}.

Then Ek−1 ⊂ Z(k−1)
2a and Ek ⊂ Z(k)

2a . Moreover, (3.2.5) implies that

setvalEk∪Ek−1
(0) = setvalEC

k ∪EC
k−1

(0). (3.2.6)

Now define Xk to be the hypergraph with vertex set V = Z2a ∪ {∞} and edge set

E = Ek ∪ {E ∪ {∞} : E ∈ Ek−1}. Then Xk is a k-hypergraph on V , and since
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θ ∈ Ant(Xk̂) it follows that θ ∈ Ant(Xk), and so Xk is self-complementary. Moreover,

(3.2.6) implies that valXk
(0) = valXC

k
(0), and so Lemma 3.2.2(2) guarantees that Xk

is 1-subset-regular, as required.

We are on our way to proving the sufficiency of condition (3.2.7) in the main

result of this section, Theorem 3.2.6. In the next lemma, we state and prove the base

case for the inductive proof of this sufficiency, which is given in Lemma 3.2.5.

Lemma 3.2.4 Let a, k, and m be positive integers such that a ≥ 2 and k[2a] ≥ 2. Let

R = Zm2a, and let V = {∞}∪R. There exists a 1-subset-regular self-complementary

k-hypergraph on V with antimorphism

θ = (∞)
m−1∏
j=0

(j2a, j2a + 1, . . . , (j + 1)2a − 1).

Proof: We will construct a 1-subset-regular self-complementary k-hypergraph Yk on

V with antimorphism θ.

For each j ∈ Zm, let

Rj = {j2a, j2a + 1, . . . , (j + 1)2a − 1},

and let

θj = (∞)(j2a, j2a + 1, . . . , (j + 1)2a − 1) ∈ Sym(Rj ∪ {∞}).

By Lemma 3.2.3, there exists a 1-subset-regular self-complementary r-hypergraph ∆j
r

on {∞} ∪Rj, with antimorphism θj, for r ∈ {2, 3, . . . , 2a − 1}.
For each E ∈ V (k), let C1(E) = {j ∈ Zm : 2 ≤ |({∞} ∪ Rj) ∩ E| ≤ 2a − 1}.

If C1(E) 6= ∅, set j1(E) = min{j : j ∈ C1(E)}. If E ∈ V (k) and C1(E) = ∅, then

|({∞} ∪Rj) ∩ E| ≤ 1 or |({∞} ∪Rj) ∩ E| ≥ 2a for all j ∈ Zm. Since 2 ≤ k[2a] < 2a,

this implies that one of the following conditions hold when C1(E) = ∅:

• ∞ 6∈ E, all cycles of θ contain 0, 1, or 2a elements of E, and at least two

nontrivial cycles of θ contain exactly one element of E.
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• ∞ ∈ E, all nontrivial cycles of θ contain at least 2a − 1 elements of E, and at

least two nontrivial cycles of θ contain exactly 2a − 1 elements of E.

For each E ∈ V (k) with C1(E) = ∅, define C2(E) = {j ∈ Zm : |(E∩Rj)| ∈ {1, 2a−1}}.
Then |C2(E)| ≥ 2. Let i1(E) and i2(E) be the two smallest elements of C2(E).

Now define Yk to be the k-hypergraph with vertex set V and edge set E such

that an element E ∈ V (k) is in E if and only if one of the following conditions hold

for j1 = j1(E), i1 = i1(E), and i2 = i2(E).

(i) C1(E) 6= ∅, |E ∩ ({∞} ∪Rj1)| = r, and E ∩ ({∞} ∪Rj1) ∈ E (∆j1
r ).

(ii) C1(E) = ∅, ∞ 6∈ E, E ∩Ri1 = {x}, E ∩Ri2 = {y}, and (x + y)[4] ∈ {1, 2}.

(iii) C1(E) = ∅, ∞ ∈ E, Ri1 \ E = {x}, Ri2 \ E = {y}, and (x + y)[4] ∈ {1, 2}.

We will prove that Yk is 1-subset-regular and self-complementary with antimorphism

θ.

First we will show that Yk is self-complementary. Note that EC = V(k) \ E is

the set of elements E of V(k) for which one of the following conditions hold. (Again,

j1 = j1(E), i1 = i1(E), and i2 = i2(E).)

(i)′ C1(E) 6= ∅, |E ∩ ({∞} ∪Rj1)| = r, and E ∩ ({∞} ∪Rj1) 6∈ E (∆j1
r ).

(ii)′ C1(E) = ∅, ∞ 6∈ E, E ∩Ri1 = {x}, E ∩Ri2 = {y}, (x + y)[4] ∈ {0, 3}.

(iii)′ C1(E) = ∅, ∞ ∈ E, Ri1 \ E = {x}, Ri2 \ E = {y}, and (x + y)[4] ∈ {0, 3}.

Observe that θ |{∞}∪Rj1
= θj1 ∈ Ant(∆j1

r ). Hence an element E ∈ V (k) satisfies

condition (i) if and only if Eθ satisfies condition (i)′. Also, for x ∈ Ri1 , y ∈ Ri2 , and

a ≥ 2, we have (xθ + yθ)[4] = ((x + 1)[2a] + (y + 1)[2a])[4] = (x + y + 2)[4], so θ maps

elements x and y with (x, y) ∈ Ri1 ×Ri2 and (x + y)[4] ∈ {1, 2} to elements xθ and

yθ with (xθ, yθ) ∈ Ri1 ×Ri2 and (xθ + yθ)[4] ∈ {0, 3}, and vice versa. It follows that

an element E ∈ V (k) satisfies condition (ii) if and only if Eθ satisfies condition (ii)′,
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and E satisfies condition (iii) if and only if Eθ satisfies condition (iii)′. Hence E ∈ E
if and only if Eθ ∈ EC . Thus θ ∈ Ant(Yk) and Yk is self-complementary.

Next we show that Yk is 1-subset-regular, which by Lemma 3.2.2(1) is true if

and only if valYk
(v) = valYC

k
(v) for all v ∈ V . Since θ ∈ Ant(Yk) and θ fixes ∞, we

certainly have valYk
(∞) = valYC

k
(∞). It remains to show that valYk

(v) = valYC
k
(v)

for all v ∈ R.

Let j′ ∈ Zm and suppose that v ∈ Rj′ . Let O be an orbit of θ on V(k) which

contains edges containing v. Let E ∈ O, and set C1(O) = C1(E), and if C1(E) 6= ∅,
set j1(O) = j1(E). Note that C1(E) is constant over all E ∈ O, and so C1(O) is

independent of our choice of E ∈ O, and so is j1(O), if it exists. If C1(O) = ∅, set

C2(O) = C2(E), and set i1(O) = i1(E) and i2(O) = i2(E). If C1(O) = ∅, then C2(O)

is constant over all E ∈ O, and so C2(O), i1(O), and i2(O) are also independent of

our choice of E. Now O is one of four types:

• TYPE 1: C1(O) 6= ∅ and j′ 6= j1(O).

• TYPE 2: C1(O) 6= ∅ and j′ = j1(O).

• TYPE 3: C1(O) = ∅ and j′ 6∈ {i1(O), i2(O)}.

• TYPE 4: C1(O) = ∅ and j′ ∈ {i1(O), i2(O)}.

For each i ∈ {1, 2, 3, 4}, let Pi be the set of orbits of θ on V(k) of TYPE i which

contain edges containing v. We will show that

setvalU(Pi)∩E(v) = setvalU(Pi)∩EC (v)

for all i ∈ {1, 2, 3, 4}. For each i, let (U(Pi)∩E)v = {E ∈ U(Pi)∩E : v ∈ E}, and let

(U(Pi) ∩ EC)v = {E ∈ U(Pi) ∩ EC : v ∈ E}.
First consider the orbits of P1. Define the mapping β1 : (U(P1)∩E)v → (U(P1)∩

EC)v by

Eβ1 = (Rj1 ∩ Eθ) ∪ (E \ Rj1),
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for all E ∈ (U(P1)∩ E)v, where j1 = j1(O) for the orbit O of θ on V(k) containing E.

Since j′ 6= j1 for all orbits O ∈ P1, and since v ∈ Rj′ , it follows that for all

E ∈ (U(P1) ∩ E)v we have v ∈ E \ Rj1 . Hence β1 maps edges of (U(P1) ∩ E)v to

edges of (U(P1) ∩ EC)v. Moreover, one can verify that β1 is invertible, with inverse

β−1
1 defined by

Eβ−1
1 =

(
Rj1 ∩ Eθ−1

)
∪ (E \ Rj1),

for all E ∈ (U(P1) ∩ EC)v, where j1 = j1(O) for the orbit O of θ on V(k) containing

E. We conclude that |(U(P1) ∩ E)v| = |(U(P1) ∩ EC)v|, and hence

setvalU(P1)∩E(v) = setvalU(P1)∩EC (v).

Now consider the orbits of P2. Every orbit O of P2 satisfies j1(O) = j′, and so

E ∩ ({∞}∪Rj1) ∈ E (∆j1
r ), where r = |E ∩ ({∞}∪Rj1)|, for all E ∈ O∩E . Observe

that since ∆j1
r is 1-subset-regular and self-complementary for all r, by Lemma 3.2.2(1)

we have

val
∆

j1
r

(v) = val
(∆

j1
r )C (v).

This implies that there is a bijection δ between the set of edges of ∆j1
r containing v and

the set of edges of (∆j1
r )C containing v. Now define the mapping β2 : (U(P2)∩E)v →

(U(P2) ∩ EC)v by

Eβ2 = (E ∩ ({∞} ∪Rj1))
δ ∪ (E \ ({∞} ∪Rj1)),

for all E ∈ (U(P2)∩ E)v, where j1 = j1(O) for the orbit O of θ on V(k) containing E.

Since j′ = j1 for all orbits O ∈ P2, and v ∈ Rj1 , the definition of δ guarantees

that v ∈ E ∩ ({∞} ∪ Rj1) if and only if v ∈ (E ∩ ({∞} ∪ Rj1))
δ. Also, condition

(i) guarantees that E ∈ U(P2) ∩ E if and only if Eβ2 ∈ U(P2) ∩ EC . Hence β2 maps

edges of (U(P2) ∩ E)v to edges of (U(P2) ∩ EC)v. Moreover, one can verify that β2 is

invertible, with inverse β−1
2 defined by

Eβ−1
2 = (E ∩ ({∞} ∪Rj1))

δ−1 ∪ (E \ ({∞} ∪Rj1)),
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for all E ∈ (U(P2) ∩ EC)v, where j1 = j1(O) for the orbit O of θ on V(k) containing

E. We conclude that |(U(P2) ∩ E)v| = |(U(P2) ∩ EC)v|, and hence

setvalU(P2)∩E(v) = setvalU(P2)∩EC (v).

Now consider the orbits of P3. Define the mapping β3 : (U(P3)∩E)v → (U(P3)∩
EC)v by

Eβ3 = ((Ri1 ∪Ri2) ∩ Eθ) ∪ (E \ (Ri1 ∪Ri2)),

for all E ∈ (U(P3)∩E)v, where i1 = i1(O) and i2 = i2(O) for the orbit O of θ on V(k)

containing E.

Since j′ 6∈ {i1, i2} for all orbits O ∈ P3, and v ∈ Rj′ , for all E ∈ (U(P3)∩E)v we

have v ∈ E\(Ri1∪Ri2). Hence β3 maps edges of (U(P3)∩E)v to edges of (U(P3)∩EC)v.

Moreover, one can verify that β3 is invertible, with inverse β−1
3 defined by

Eβ−1
3 =

(
(Ri1 ∪Ri2) ∩ Eθ−1

)
∪ (E \ (Ri1 ∪Ri2)),

for all E ∈ (U(P3) ∩ EC)v, where i1 = i1(O) and i2 = i2(O) for the orbit O of θ on

V(k) containing E. We conclude that |(U(P3) ∩ E)v| = |(U(P3) ∩ EC)v|, and hence

setvalU(P3)∩E(v) = setvalU(P3)∩EC (v).

Finally, consider the orbits of P4. Every orbit O of P4 satisfies j′ ∈ {i1, i2}.
Since v ∈ Rj′ , we must have v ∈ Ri1 ∪Ri2 . Assume, without loss of generality, that

v ∈ Ri1 . Define the mapping β4 : (U(P4) ∩ E)v → (U(P4) ∩ EC)v by

Eβ4 =
(
Ri2 ∩ Eθ2

)
∪ (E \ Ri2),

for all E ∈ (U(P4) ∩ E)v, where in each case i1 = i1(O) and i2 = i2(O) for the

orbit O of θ on V(k) containing E. Now since v ∈ Ri1 , it follows that v ∈ E \
Ri2 for all E in (U(P4) ∩ E)v. Now observe that if E ∈ (U(P4) ∩ E)v, then either

|E ∩ Ri1| = |E ∩ Ri2| = 1 or |Ri1 \ E| = |Ri2 \ E| = 1. In the former case,
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we must have E ∩ Ri1 = {v} and E ∩ Ri2 = {w}, for some w ∈ Ri2 such that

(v +w)[4] ∈ {1, 2}, which implies that Eβ4 ∩Ri1 = {v}, Eβ4 ∩Ri2 = {(w+2)[2a]}, and

(v + (w + 2)[2a])[4] = (v + w + 2)[4] ∈ {0, 3}, since a ≥ 2. In the latter case, we must

have Ri1 \E = {x} and Ri2 \E = {y}, for some x ∈ Ri1 and y ∈ Ri2 such that x 6= v

and (x + y)[4] ∈ {1, 2}, which implies that Ri1 \Eβ4 = {x}, Ri2 \Eβ4 = {(y + 2)[2a]},
and (x + (y + 2)[2a])[4] = (x + y + 2)[4] ∈ {0, 3}, since a ≥ 2. Hence conditions (ii)

and (iii) guarantee that β4 maps edges of (U(P4) ∩ E)v to edges of (U(P4) ∩ EC)v.

Moreover, the permutation β4 is invertible, with inverse β−1
4 defined by

Eβ−1
4 =

(
Ri2 ∩ Eθ−2

)
∪ (E \ Ri2),

for all E ∈ (U(P4) ∩ EC)v, where i1 = i1(O) and i2 = i2(O) for the orbit O of θ on

V(k) containing E. We conclude that |(U(P4) ∩ E)v| = |(U(P4) ∩ EC)v|, and hence

setvalU(P4)∩E(v) = setvalU(P4)∩EC (v).

Now observe that

valYk
(v) =

4∑
i=1

setvalU(Pi)∩E(v) =
4∑

i=1

setvalU(Pi)∩EC (v) = valYC
k
(v).

Since j′ was an arbitrary element of Zm, we conclude that valYk
(v) = valYC

k
(v) for

all v ∈ R = ∪j∈ZmRj, and hence for all v ∈ V = R ∪ {∞}. Thus Lemma 3.2.2(1)

implies that Yk is 1-subset-regular.

It should be noted that Lemma 3.2.4 was proved previously for the case where

a = 2. Rao handled the case where a = 2 and k = 2 in [27], and Potočnik and Šajna

handled the case where a = 2 and k = 3 in [23].

We are ready to prove the sufficiency of condition (3.1.3) in Theorem 3.1.2.

Lemma 3.2.5 demonstrates the existence of a 1-subset-regular self-complementary

uniform hypergraph of rank k and order n for every pair (n, k) satisfying condi-

tion (3.2.7).
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Lemma 3.2.5 Let a, k, m, and s be positive integers such that a ≥ 2 and s <

k[2a]. Let R = Zm2a, let S = {∞1,∞2, . . . ,∞s} such that S ∩ R = ∅, and let

V = S ∪ R. There exists a 1-subset-regular self-complementary k-hypergraph on V
with antimorphism

θ = (∞1)(∞2) · · · (∞s)
m−1∏
j=0

(j2a, j2a + 1, . . . , (j + 1)2a − 1).

Proof: Fix positive integers a and m such that a ≥ 2. We prove that there ex-

ists a 1-subset-regular self-complementary k-hypergraph on V with antimorphism θ

for all positive integers k and s such that 1 ≤ s < k[2a]. The proof is by induction on s.

Base Step: s = 1. In this case, since s < k[2a], we have k[2a] ≥ 2, and so the ex-

istence of a 1-subset-regular self-complementary k-hypergraph on V = {∞1} ∪ Zm2a

with antimorphism

θ = (∞1)
m−1∏
j=0

(j2a, j2a + 1, . . . , (j + 1)2a − 1)

follows from Lemma 3.2.4. Hence the result holds for s = 1.

Induction Step: Suppose s > 1, and assume that there exists a 1-subset-regular

self-complementary k̂-hypergraph Zk̂ on

V̂ = {∞1, . . . ,∞s−1} ∪ Zm2a

with antimorphism

θ̂ = (∞1) · · · (∞s−1)
m−1∏
j=0

(j2a, j2a + 1, . . . , (j + 1)2a − 1),

for all k̂ such that 1 ≤ s− 1 < k̂[2a].

Now let k be a positive integer such that s < k[2a]. We will construct a 1-subset-

regular self-complementary k-hypergraph on V with antimorphism θ. Now 1 ≤ s−1 <
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k[2a] and so by the induction hypothesis, there exists a 1-subset-regular self-comple-

mentary k-hypergraph Zk on V̂ with antimorphism θ̂. Moreover, since s ≥ 2, we have

k[2a] ≥ 3, and so (k−1)[2a] = k[2a]−1. This implies that 1 ≤ s−1 < (k−1)[2a], and so

by the induction hypothesis, there also exists a 1-subset-regular self-complementary

(k − 1)-hypergraph Zk−1 on V̂ with antimorphism θ̂.

Let Zk be the k-hypergraph with vertex set V = V̂ ∪ {∞s} and edge set

E = E(Zk)
⋃
{{∞s} ∪ E : E ∈ E(Zk−1)}.

Since θ |V̂= θ̂ ∈ Ant(Zk) ∩ Ant(Zk−1), and θ fixes ∞s, it follows that E ∈ E if and

only if Eθ ∈ EC . Hence θ ∈ Ant(Zk) and Zk is self-complementary. Moreover, for all

v ∈ V̂ , we have

valZk
(v) = valZk

(v) + valZk−1
(v)

= valZC
k
(v) + valZC

k−1
(v)

= valZC
k
(v).

Since the antimorphism θ fixes ∞s, we also have valZk
(∞s) = valZC

k
(∞s), and so

valZk
(v) = valZC

k
(v) for all v ∈ V̂ ∪ {∞} = V . Thus Lemma 3.2.2(1) implies that Zk

is 1-subset-regular.

Hence by induction on s, there exists a 1-subset-regular self-complementary k-

hypergraph on V with antimorphism θ for every positive integer s < k[2a].

Theorem 3.2.6 Let k and n be positive integers such that 1 < k ≤ n. There exists a

1-subset-regular self-complementary k-hypergraph of order n if and only if there exists

an integer a such that max{i : 2i | k} < a ≤ min{i : 2i > k} and

n[2a] ∈ {1, 2, . . . , k[2a] − 1}. (3.2.7)
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Proof: The necessity of condition (3.2.7) follows from Theorem 3.1.2. Suppose that

n satisfies condition (3.2.7). Then n = m2a + s for some positive integers a, m, and

s such that max{i : 2i | k} < a ≤ min{i : 2i > k} and 1 ≤ s < k[2a]. If a = 1,

then 1 ≤ s < k[2a] cannot hold, and so in this case the sufficiency of condition (3.2.7)

holds vacuously. On the other hand, if a ≥ 2, then the existence of a 1-subset-regular

self-complementary k-hypergraph of order n follows from Lemma 3.2.5, and so con-

dition (3.2.7) is sufficient in this case also.

Lemma 3.1.3 states that the necessary and sufficient conditions (3.2.7) of Theo-

rem 3.2.6 are equivalent to the necessary conditions (3.1.5) of Theorem 3.1.4 in the

case t = 1. We obtain the following alternative statement of the necessary and suf-

ficient conditions on the order of a 1-subset-regular self-complementary k-uniform

hypergraph in terms of the binary representation of k.

Theorem 3.2.7 Let k and n be positive integers such that 1 < k ≤ n, and let b

be the binary representation of k. There exists a 1-subset-regular self-complementary

k-hypergraph of order n if and only if

n[2`+1] ∈ {1, 2, . . . , k[2`+1] − 1} (3.2.8)

for some ` ∈ supp(b).

3.2.3 Open problem

The author proposes the following problem.

Problem 3.2.8 For given integers k ≥ 2 and t ≥ 1, determine the set Lt,k of all

integers n for which there exists a t-subset-regular self-complementary k-hypergraph

of order n.
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Theorem 3.2.1 gives a solution to problem 3.2.8 in the case where k ∈ {2, 3}, and

Theorem 3.2.6 solves this problem for all positive integers k in the case where t = 1.

However, Problem 3.2.8 remains mainly unsolved.

3.2.4 Connections to design theory

Recall that if a t-subset-regular k-uniform hypergraph X of order n is self-complemen-

tary, then X and its complement XC are both t-(n, k, λ) designs with λ =
(

n−t
k−t

)
/2.

Hence the pair {X, XC} is an LS[2](t, k, n) in which the t-designs are isomorphic.

In [12], Hartman considered the problem of halving the complete t-(n, k,
(

n−t
k−t

)
)

design into two t-(n, k,
(

n−t
k−t

)
/2) designs to form a LS[2](t, k, n), and he conjectured

that the basic necessary conditions on the order n given by Lemma 3.1.1 are also

sufficient.

Conjecture 3.2.9 [12] There exists a LS[2](t, k, n) if and only if
(

n−i
k−i

)
is even for

i = 0, 1, . . . , t.

Baranyai [5] proved that Hartman’s conjecture is true for t = 1. The combined

efforts of the authors Ajoodani-Namini, Alltop, Dehon, Hartman, Khosrovshahi, and

Teirlinck in the works [5, 2, 3, 4, 1, 8, 12, 16, 34] proved that Hartman’s conjecture

is true for t = 2. However, it is important to note that this result does not provide

a solution to Problem 3.2.8 for the case t = 2, since it does not guarantee that

there exists a LS[2](2, k, n) for every admissible order of Lemma 3.1.1 in which the

2-designs are isomorphic. Hence these results on halving the complete designs do not

show the existence of 2-subset-regular self-complementary k-hypergraphs of every

admissible order. The only previous result that the author has found on halving the

complete design into two isomorphic 2-designs is Knor and Potočnik’s construction

for 2-subset-regular self-complementary 3-hypergraphs of every admissible order [18].



Chapter 4

Transitive self-complementary

hypergraphs

4.1 Necessary conditions on order

4.1.1 Previous results: vertex transitivity

In this section, we present the known necessary conditions on the order n of a vertex

transitive self-complementary k-hypergraph X in the case that k has the form k = 2`

or k = 2` +1 for some positive integer ` and n ≡ 1 (mod 2`+1). Such a k-hypergraph

X is necessarily 1-subset-regular. Hence Corollary 3.1.5 implies that

n[2`+1] ∈ {1, 2, . . . , k − 1}.

However, the vertex-transitivity of X implies even stronger necessary conditions on

its order n in the case n ≡ 1 (mod 2`+1), as the next result due to Potočnik and

Šajna [24] shows.

Recall that for a positive integer n and a prime number p, the symbol n(p) denotes

the largest integer i such that pi divides n.

57
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Theorem 4.1.1 [24] Let ` be a positive integer, let k = 2` or k = 2` + 1, and let

n ≡ 1 ( mod 2`+1). If there exists a vertex transitive self-complementary k-hypergraph

of order n, then

pn(p) ≡ 1 (mod 2`+1) for every prime p.

Theorem 4.1.1 was proved by Li [20] for k = 2 and n ≡ 1 (mod 4) for the

special case when n is a product of two distinct primes. Li’s proof is based on a

classification of vertex transitive graphs of order pq (where p 6= q are primes), which

was obtained by Praeger and Xu [26] using the classification of finite simple groups.

In 1999, Muzychuk [21] gave an algebraic proof of Theorem 4.1.1 for the case k = 2

and n ≡ 1 (mod 4). Consequently, integers n satisfying pn(p) ≡ 1 (mod 4) for all

primes p are called Muzychuk integers. In 2007, Potočnik and Šajna extended the

idea in Muzychuk’s proof to prove Theorem 4.1.1.

The following immediate corollary to Theorem 4.1.1 gives necessary conditions

on the prime divisors of the order n of a vertex transitive self-complementary k-hyper-

graph for small values of the rank k when n satisfies the hypotheses of Theorem 4.1.1.

Corollary 4.1.2 Suppose X is a vertex transitive self-complementary k-hypergraph

of order n, and let pr be the highest power of a prime p that divides n. Then the

following conditions hold.

(a) If k = 2, then pr ≡ 1 (mod 4).

(b) If k = 3 and n is odd, then pr ≡ 1 (mod 4).

(c) If k = 4 or 5, and n ≡ 1 (mod 8), then pr ≡ 1 (mod 8).

4.1.2 New results: t-fold-transitivity

Suppose that k = 2` or k = 2` + 1 for a positive integer `, and that t ≥ 1 is an

integer. If X is a t-transitive self-complementary k-hypergraph of order n, then X is
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necessarily t-subset-regular. Hence Corollary 3.1.5 implies that

n[2`+1] ∈ {t, t + 1, . . . . . . , k − 1}.

However, the t-transitivity of X implies even stronger necessary conditions on its

order n in the cases where n ≡ t (mod 2`+1), as the next result shows.

Theorem 4.1.3 Let ` be a positive integer, let k = 2` or k = 2` +1, let t be a positive

integer and let n ≡ t (mod 2`+1). If there exists a t-transitive self-complementary k-

hypergraph of order n, then

p(n−t+1)(p) ≡ 1 (mod 2`+1) for every prime p.

Proof: When t = 1 the result follows directly from Theorem 4.1.1, so we may assume

that t ≥ 2.

Suppose that X = (V,E) is a t-transitive self-complementary k-hypergraph of

order n ≡ t (mod 2`+1). Let v1, v2, . . . , vt−1 ∈ V , and let θ ∈ Ant(X). Since X is

t-transitive, it is certainly (t−1)-transitive, and so there exists σ ∈ Aut(X) such that

vθσ
i = (vθ

i )
σ = vi for all i ∈ {1, 2, . . . , t − 1}. Hence θσ fixes {v1, . . . , vt−1} pointwise

and θσ ∈ Ant(X). That is, there exists an antimorphism θ∗ = θσ of X which fixes

every element in the set {v1, . . . , vt−1}. Also, since X is t-transitive, it follows that
⋂t−1

i=1 Aut(X)vi
acts transitively on V \ {v1, v2, . . . , vt−1}.

For each i ∈ {1, 2, . . . , t − 1}, let Evi
denote the set of edges of E containing

vi, and Evi
denote the set of edges of V (k) \ E containing vi. Then every permuta-

tion in
⋂t−1

i=1 Aut(X)vi
must map edges in

⋃t−1
i=1 Evi

onto edges in
⋃t−1

i=1 Evi
, and the

permutation θ∗ ∈ Ant(X) must map edges in
⋃t−1

i=1 Evi
onto edges in

⋃t−1
i=1 Evi

. Thus

X̂ = (V \ {v1, v2, . . . , vt−1}, E \⋃t−1
i=1 Evi

) is a self-complementary k-hypergraph with

θ∗ ∈ Ant(X̂)

and
t−1⋂
i=1

Aut(X)vi
≤ Aut(X̂).
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Moreover, the group
⋂t−1

i=1 Aut(X)vi
acts transitively on V (X̂) = V \{v1, v2, . . . , vt−1}.

Hence X̂ is a vertex transitive self-complementary k-hypergraph of order

|V \ {v1, v2, . . . , vt−1}| = n− t + 1 ≡ 1 (mod 2`+1),

and so by Theorem 4.1.1 it follows that

p(n−t+1)(p) ≡ 1 (mod 2`+1) for every prime p.

When t = 2, Theorem 4.1.3 gives necessary conditions on the order of a doubly

transitive self-complementary k-hypergraph in the cases where k = 2` or k = 2` + 1.

Corollary 4.1.4 Let ` be a positive integer, let k = 2` or k = 2` + 1, and suppose

n ≡ 2 (mod 2`+1). If there exists a doubly transitive self-complementary k-hyper-

graph of order n, then

p(n−1)(p) ≡ 1 (mod 2`+1) for every prime p.

The following corollary gives necessary conditions on the prime divisors of n− 1,

where n is the order of a doubly transitive self-complementary k-hypergraph satisfying

the hypotheses of Corollary 4.1.4, for small values of the rank k.

Corollary 4.1.5 Let X be a doubly transitive self-complementary k-hypergraph of

order n, and let pr be the highest power of a prime p that divides n − 1. Then the

following conditions hold.

(a) If k = 3, then pr ≡ 1 (mod 4).
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(b) If k = 4 and n is even, then pr ≡ 1 (mod 8).

(c) If k = 5 and n ≡ 2 (mod 8), then pr ≡ 1 (mod 8).

4.2 Sufficient conditions on order

4.2.1 Previous results

In this section, we state previous results due to Rao [27], and Potočnik and Šajna

[24, 25], which show that the necessary conditions of Theorem 4.1.1 are sufficient

when k ∈ {2, 3}. We also state some other known sufficient conditions on the orders

of vertex transitive and doubly transitive self-complementary k-uniform hypergraphs.

The following result is a partial converse to Theorem 4.1.1 in the case where n

is a prime power. It is due to Potočnik and Šajna.

Theorem 4.2.1 [24] There exists a vertex transitive self-complementary k-hyper-

graph of order n for every prime power n congruent to 1 modulo 2`+1, where ` =

max{k(2), (k − 1)(2)}.

Potočnik and Šajna proved Theorem 4.2.1 using a Paley k-hypergraph construc-

tion. We will generalize their construction in Section 4.2.2 and prove that the converse

to Theorem 4.1.1 is true in general, and not just when n is a prime power.

Recall that a Muzychuk integer is a positive integer n satisfying pn(p) ≡ 1 ( mod 4)

for all primes p. In [27], Rao constructed vertex transitive self-complementary graphs

of order n for every Muzychuk integer n. In [24], Potočnik and Šajna used a wreath

product construction to find vertex transitive self-complementary 3-hypergraphs of

order n for every Muzychuk integer n. Hence the condition of Theorem 4.1.1 is

sufficient when k = 2, or when k = 3 and n is odd, as the next result states.
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Theorem 4.2.2 Let n be a positive integer.

(1) [27] There exists a vertex transitive self-complementary graph of order n if and

only if n is a Muzychuk integer.

(2) [24] If n is odd, there exists a vertex transitive self-complementary 3-hypergraph

of order n if and only if n is a Muzychuk integer.

In [24], Potočnik and Šajna also constructed doubly transitive self-complemen-

tary 3-hypergraphs of order q + 1 for every prime power q congruent to 1 modulo

4. Then using a rank increasing construction and a wreath product construction,

they obtained the following sufficient conditions on the order of vertex transitive and

doubly transitive self-complementary k-hypergraphs.

Theorem 4.2.3 [24] Let k be a positive integer, let n be a Muzychuk integer, and

let q be a prime power congruent to 1 modulo 4.

(1) If k ≡ 2 or 3 (mod 4), then there exists a self-complementary vertex transitive

k-hypergraph of order n.

(2) If k ≡ 3 (mod 4), then there exist self-complementary vertex transitive k-hy-

pergraphs of order 2n and order (1 + q)n, and there exists a doubly transitive

self-complementary k-hypergraph of order 1 + q.

4.2.2 New results - Paley uniform hypergraphs

In this section, we present a construction for a vertex transitive self-complementary

uniform hypergraph of order n for every integer n satisfying the necessary conditions

of Theorem 4.1.1, and consequently prove that these necessary conditions are also

sufficient.

We begin with a construction for vertex transitive self-complementary uniform

hypergraphs of prime power order, which is an extension of a construction due to
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Potočnik and Šajna [24] for objects which they named Paley k-uniform hypergraphs.

Their construction is an extension of the well-known construction of Paley graphs

which can be found in Rao [27]. It should be noted that the extension to Paley 3-hy-

pergraphs had been previously introduced by Kocay [19]. Peisert [22] also presented

this construction in the case where k = 2 and r is any divisor of (q − 1)/4.

If F is a finite field and a1, a2, . . . , ak ∈ F, the Van der Monde determinant of

a1, a2, . . . , ak is defined as V M(a1, . . . , ak) =
∏

i>j(ai − aj).

Construction 4.2.4 Paley k-uniform hypergraph

Let k be an integer, k ≥ 2, and let q be a prime power such that q ≡ 1 (mod 2`+1),

where ` = max{k(2), (k − 1)(2)}. Let r be a divisor of the integer (q − 1)/2`+1. Let

Fq be the field of order q, let ω be a generator of the multiplicative group F∗q, and let

c = gcd(q − 1, r
(

k
2

)
). For i = 0, 1, . . . , 2c − 1, let Fi denote the coset ωi

〈
ω2r(k

2)
〉

in

F∗q. Finally, define Pq,k,r to be the k-hypergraph with vertex set

V (Pq,k,r) = Fq

and edge set

E(Pq,k,r) = {{a1, . . . , ak} ∈ F(k)
q : V M(a1, . . . , ak) ∈ F0 ∪ · · · ∪ Fc−1}.

Definition 4.2.5 For a prime power q, an element a ∈ F∗q, and an element b ∈ Fq,

we define the mapping αa,b : Fq → Fq by xαa,b = ax + b for all x ∈ Fq.

Lemma 4.2.6 Let Pq,k,r be the Paley k-hypergraph of Construction 4.2.4, and let

c = gcd(q − 1, r
(

k
2

)
).

(1) The edge set of Pq,k,r is well defined.

(2) Let s be an integer such that s
(

k
2

)
is an odd multiple of c. Then

(a) 〈αω2s,0, α1,1〉 ≤ Aut(Pq,k,r).
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(b) 〈αωs,0, α1,1〉 ≤ Aut(Pq,k,r) ∪ Ant(Pq,k,r).

(3) 〈αω2r,0, α1,1〉 ≤ Aut(Pq,k,r) and 〈αωr,0, α1,1〉 ≤ Aut(Pq,k,r) ∪ Ant(Pq,k,r).

(4) {αa,b : a ∈ F∗q, b ∈ Fq} ∩ (Aut(Pq,k,r) ∪ Ant(Pq,k,r)) = 〈αωs′ ,0, α1,1〉, where s′ =

gcd{s : s ∈ {1, 2, . . . , q − 1}, s(k
2

)
is a multiple of c}.

Proof:

(1) Since r divides (q − 1)/2`+1, we have q − 1 = 2`+1rt for some positive integer t.

Let d be the order of ωr(k
2) in F∗q. Then

d =
q − 1

gcd(q − 1, r
(

k
2

)
)

=
q − 1

c
.

First consider the case when k is even. Then k = 2`k′ for k′ odd. Hence

d =
2`+1rt

gcd(2`+1rt, rk(k − 1)/2)
=

2`+1t

gcd(2`+1t, 2`k′(k − 1)/2)

=
2`+1t

gcd(2`+1t, 2`−1k′(k − 1))
= 4

(
t

gcd(4t, k′(k − 1))

)
.

Since k′ and k − 1 are both odd integers, it follows that gcd(4t, k′(k − 1)) is a

divisor of t, and so t/ gcd(4t, k′(k − 1)) is an integer. Thus d is divisible by 4

when k is even. Now suppose that k is odd. Then k − 1 = 2`k′ where k′ is odd.

We similarly obtain

d = 4

(
t

gcd(4t, kk′)

)
, (4.2.1)

and since k and k′ are both odd, it follows that d is divisible by 4 when k is odd

also.

Thus d is divisible by 4, and consequently the subgroup
〈
ω2r(k

2)
〉

is of even

order and even index in F∗q. Hence −1 ∈
〈
ω2r(k

2)
〉
. Thus the Van der Monde

determinant of an edge is well defined.

The number of distinct cosets of 〈ω2r(k
2)〉 in F∗q is (q − 1)/|ω2r(k

2)| = gcd(q −
1, 2r

(
k
2

)
) = 2c, since gcd(q − 1, r

(
k
2

)
) = c and d = (q − 1)/c is divisible by 4, and
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hence even. Thus F0, F1, . . . , F2c−1 are all of the cosets of 〈ω2r(k
2)〉 in F∗q, and so

the sets

A =
c−1⋃
i=0

Fi and Ā =
2c−1⋃
i=c

Fi

partition F∗q. Hence the edge set of Pq,k,r is well defined.

(2) Since
∣∣∣ω2r(k

2)
∣∣∣ = (q − 1)/2c, and the cyclic subgroup of F∗q of order (q − 1)/2c

is unique, it follows that
〈
ω2r(k

2)
〉

= 〈ω2c〉. Hence Fi = ωi〈ω2c〉 for all i =

0, 1, . . . , 2c− 1, and consequently

ωiFj = ωiωj〈ω2c〉 = ω(i+j)[2c]〈ω2c〉 = F(i+j)[2c]
.

Now if z is an integer, then

ω(2z+1)cA =
c−1⋃
i=0

ω(2z+1)cFi =
c−1⋃
i=0

F(i+(2z+1)c)[2c]
=

c−1⋃
i=0

Fi+c =
2c−1⋃
i=c

Fi = Ā,

and so

ω(2z+1)cA = Ā and ω(2z+1)cĀ = A for every integer z. (4.2.2)

On the other hand,

ω(2z)cA =
c−1⋃
i=0

ω(2z)cFi =
c−1⋃
i=0

F(i+2zc)[2c]
=

c−1⋃
i=0

Fi = A,

and so

ω2zcA = A and ω2zcĀ = Ā for every integer z. (4.2.3)

Finally, if t is not a multiple of c, say t = cz + j where 0 < j < c, then

ωtA =
c−1⋃
i=0

ωtFi =
c−1⋃
i=0

F(i+t)[2c]
=

c−1⋃
i=0

F(i+j+zc)[2c]

contains some cosets Fi with 0 ≤ i ≤ c−1 and some cosets Fi with c ≤ i ≤ 2c−1.

Hence

ωtA ∩ A 6= ∅ and ωtA ∩ Ā 6= ∅ if t is not a multiple of c. (4.2.4)
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Now let s be an integer such that s
(

k
2

)
is an odd multiple of c. Then (4.2.2)

implies that

ω(2z+1)s(k
2)A = Ā and ω(2z+1)s(k

2)Ā = A, (4.2.5)

and (4.2.3) implies that

ω(2z)s(k
2)A = A and ω(2z)s(k

2)Ā = Ā, (4.2.6)

for every integer z.

Observe that for a k-subset {a1, a2, . . . , ak} ∈ F(k)
q , an integer z, and an element

b ∈ Fq, we have

V M(ωta1 + b, . . . , ωtak + b) = ωt(k
2)V M(a1, . . . , ak). (4.2.7)

(a) Equations (4.2.7) and (4.2.6) imply that the permutation αω2zs,b maps the

Van der Monde determinant of an element of F(k)
q from A to A, or from Ā

to Ā. It follows that αω2zs,b is an automorphism of Pq,k,r. We conclude that

〈αω2s,0, α1,1〉 ≤ Aut(Pq,k,r).

(b) Equations (4.2.7) and (4.2.5) imply that the permutation αω(2z+1)s,b maps the

Van der Monde determinant of an element of F(k)
q from A to Ā, or vice versa.

It follows that αω(2z+1)s,b is an antimorphism of Pq,k,r. We conclude that

{αω(2z+1)s,b : z ∈ Z, b ∈ Fq} ⊆ Ant(Pq,k,r). This implies that 〈αωs,0, α1,1〉 ≤
Aut(Pq,k,r) ∪ Ant(Pq,k,r).

(3) Since 〈ωr(k
2)〉 = 〈ωc〉, we have r

(
k
2

)
= mc for an integer m such that gcd ((q − 1)/c, m) =

1. It was shown in Part (1) that (q − 1)/c is divisible by 4, and hence even, and

so it follows that the integer m must be odd. Hence r
(

k
2

)
is an odd multiple of c,

and so the result follows from Part (2).

(4) Let S = {s ∈ {1, 2, . . . , q − 1} : s
(

k
2

)
is a multiple of c}. Part (2) implies that

〈αωs,0, α1,1〉 ≤ Aut(Pq,k,r) ∪ Ant(Pq,k,r)
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for all s ∈ S. It follows that

{αa,b : a ∈ 〈ωs : s ∈ S〉, b ∈ Fq} ≤ Aut(Pq,k,r) ∪ Ant(Pq,k,r). (4.2.8)

But 〈ωs : s ∈ S〉 is a cyclic group generated by ωs′ , where s′ = gcd{s : s ∈ S}.
Hence (4.2.8) implies that

〈αωs′ ,0, α1,1〉 ≤ Aut(Pq,k,r) ∪ Ant(Pq,k,r).

It remains to show that if αa,b ∈ Aut(Pq,k,r)∪Ant(Pq,k,r), then a ∈ 〈ωs′〉. Suppose,

for the sake of contradiction, that αa,b ∈ Aut(Pq,k,r) ∪ Ant(Pq,k,r) but a 6∈ 〈ωs′〉.
Now 〈ωs〉 ≤ 〈ωs′〉 for all s ∈ S. If a = ωm for an integer m such that m

(
k
2

)
is

a multiple of c, then m ∈ S, and so a ∈ 〈ωs′〉, giving a contradiction. Hence we

may assume that a = ωn for an integer n such that n
(

k
2

)
is not a multiple of c.

Then (4.2.4) implies that ωn(k
2)A 6= A and ωn(k

2)A 6= Ā, and so (4.2.7) implies

that αa,b 6∈ Aut(Pq,k,r) ∪ Ant(Pq,k,r), giving a contradiction. We conclude that

{αa,b : a ∈ F∗q, b ∈ Fq} ∩ (Aut(Pq,k,r) ∪ Ant(Pq,k,r)) = 〈αωs′ ,0, α1,1〉.

In Chapter 5, we will use Lemma 4.2.6 along with results from finite permutation

group theory to determine the complete automorphism group of the Paley k-hyper-

graph Pp,k,r of Construction 4.2.4 for the cases in which p is prime and k = 2` or

k = 2` + 1.

Lemma 4.2.7 The Paley k-hypergraph Pq,k,r defined in Construction 4.2.4 is vertex

transitive and self-complementary.

Proof: Lemma 4.2.6(3) shows that 〈α1,1〉 ≤ Aut(Pq,k,r). Since 〈α1,1〉 acts transi-

tively on Fq, so does Aut(Pq,k,r). Hence Pq,k,r is vertex transitive. Lemma 4.2.6(3)

also shows that Ant(Pq,k,r) 6= ∅, and thus Pq,k,r is self-complementary.
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It should be noted that Lemma 4.2.7 was first proved in 1985 for the cases with

k = 2, r = 1 by Rao [27]. In 1992, Kocay [19] proved it for the cases with k = 3,

r = 1, and in 2007, Potočnik and Šajna [24] proved it for all k when r = 1.

Construction 4.2.4 and Lemma 4.2.7 together prove the partial converse to The-

orem 4.1.1 which is stated in Theorem 4.2.1, and is due to Potočnik and Šajna [24].

We can generalize Construction 4.2.4 to construct vertex transitive self-com-

plementary k-hypergraphs of order n for all integers n ≡ 1 (mod 2`+1) when ` =

max{m(2) : 1 ≤ m ≤ k}, which implies that the converse of Theorem 4.1.1 is true in

general.

Construction 4.2.8 Generalized Paley k-uniform hypergraph

Let k be an integer, k ≥ 2, and let n be a positive integer such that

pn(p) ≡ 1 (mod 2`+1) for every prime p,

where ` is the largest positive integer such that 2` divides a positive integer m with

m ≤ k. Let n = pα1
1 pα2

2 · · · pαt
t be the unique prime factorization of n, where pi is

prime, αi ≥ 1 and p1 < p2 < . . . < pt. For each i ∈ {1, 2, . . . , t}, let qi = pαi
i , let ri be

a divisor of the integer (qi − 1)/2`+1, and let r = (r1, r2, . . . , rt). Let Fqi
denote the

field of order qi.

Let

V = Fq1 × Fq2 × . . .× Fqt−1 × Fqt .

Define a mapping ζ : V (k) → Z2 by

ζ({x1, x2, . . . , xk}) =





0, if {x1j, x2j, . . . , xkj} ∈ E(Pqj ,m,rj
)},

where j = min{i : 1 ≤ i ≤ t, |{x1i, x2i, . . . , xki}| > 1}

and m = |{x1j, x2j, . . . , xkj}|.

1, otherwise.
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Now define Xn,k,r to be the k-hypergraph with vertex set V and edge set

E = {{x1, x2, . . . , xk} ∈ V (k) : ζ({x1, x2, . . . , xk}) = 0}.

Note that when t = 1 and n = q1 = pα1
1 is a prime power congruent to 1 modulo

2`+1, the k-hypergraph Xn,k,r of Construction 4.2.8 is the same as the k-hypergraph

Pq1,k,r1 given by Construction 4.2.4.

Lemma 4.2.9 The k-hypergraph Xn,k,r defined in Construction 4.2.8 is vertex tran-

sitive and self-complementary.

Proof: Since pn(p) ≡ 1 (mod 2`+1) for every prime p, it follows that for each i,

we have qi ≡ 1 (mod 2`+1), and hence qi ≡ 1 (mod 2j+1) for all j ≤ `. Now by

definition, ` = max{`m : 1 < m ≤ k} where `m = max{m(2), (m − 1)(2)}. Hence

qi ≡ 1 ( mod 2`m+1) for m = 2, 3, . . . , k, and so Pqi,m,ri
is well-defined for i = 1, 2, . . . , t

and m = 2, 3, . . . , k. Thus the edges of Xn,k,r are well-defined.

Let F∗qi
denote the (cyclic) multiplicative group of non-zero elements in Fqi

, and

let ωi be a generator of F∗qi
. For each i ∈ {1, 2 . . . , t}, an element a ∈ F∗qi

, and an

element b ∈ Fqi
, let αi,a,b denote the permutation αa,b of Fqi

defined on page 63. Then

by Lemma 4.2.6(3), αi,ω
ri
i ,0 ∈ Ant(Pqi,m,ri

) for m = 2, 3, . . . , k, so it follows from the

definition of Xn,k,r that

α1,ω
r1
1 ,0 × · · · × αt,ω

rt
t ,0 ∈ Ant(Xn,k,r).

Hence Xn,k,r is self-complementary.

To see that Xn,k,r is vertex transitive, it suffices to show that an automorphism

can map the vertex 0 = (0, 0, . . . , 0) to any other vertex. For i = 1, 2, . . . , t and

for any xi ∈ Fqi
, the bijection αi,1,xi

maps 0 to xi. Moreover, Lemma 4.2.6(2)

implies that αi,1,xi
is an automorphism of Pqi,m,ri

, for m = 2, 3, . . . , k. Now let
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x = (x1, x2, . . . , xt) ∈ V . It follows from the definition of Xn,k,r that αx = α1,1,x1 ×
α2,1,x2 × · · · × αt,1,xt ∈ Aut(Xn,k,r). Since αx maps 0 to x and x was an arbitrary

element of V , it follows that Aut(Xn,k,r) acts transitively on V , and so Xn,k,r is vertex

transitive.

Theorem 4.2.10 Let ` be a positive integer, let k = 2` or k = 2` + 1, and let

n ≡ 1 (mod 2`+1). There exists a vertex transitive self-complementary k-hypergraph

of order n if and only if

pn(p) ≡ 1 (mod 2`+1) for every prime p. (4.2.9)

Proof: The necessity of condition (4.2.9) follows directly from Theorem 4.1.1. Since

k = 2` or k = 2` + 1, for any integer m such that 1 < m ≤ k, ` is greater than or

equal to the largest integer i such that 2i divides m. Thus k, `, and n satisfy the

hypotheses of Construction 4.2.8, and so the sufficiency of condition (4.2.9) follows

from Lemma 4.2.9.

4.3 Open problems

In [24], Potočnik and Šajna proposed the following problem for vertex transitive self-

complementary uniform hypergraphs:

Problem 4.3.1 For a given integer k ≥ 2, determine the set Mk of all integers n

for which there exists a vertex transitive self-complementary k-hypergraph of order n.

(Note that the set Mk is a subset of the set L1,k of Problem 3.2.8 for all k ≥ 2. Hence

any partial solution to Problem 4.3.1 provides a partial solution to Problem 3.2.8 for

t = 1, but not conversely.)
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Theorem 4.2.2 gives the solution to Problem 4.3.1 when k = 2, and it gives all

odd integers in M3. Theorem 4.2.3 and Theorem 4.2.10 give some subsets of Mk for

k = 2` and k = 2` + 1. However, Problem 4.3.1 remains mainly unanswered, and the

problem seems to have no simple solution. In [24], Potočnik and Šajna suggest the

following more feasible subproblem.

The first k for which Problem 4.3.1 remains unsolved is k = 3. Theorem 4.2.2(2)

gives a solution for all odd orders n. For even orders, Theorem 3.1.4 implies that

if 2m ∈ M3, then m is odd. Moreover, Theorem 4.2.3(2) implies that 2m ∈ M3

for every Muzychuk integer m, but it also implies that (q + 1)m ∈ M3 for every

Muzychuk integer m and every prime power q congruent to 1 modulo 4. Hence there

do exist non-Muzychuk integers m such that 2m ∈Mk. What form can such integers

m take? Potočnik and Šajna posed the following problem.

Problem 4.3.2 Find all odd non-Muzychuk integers m such that there exists a vertex

transitive self-complementary 3-hypergraph of order 2m.

One natural first step for solving Problem 4.3.2 is to determine the primes p

for which 2p ∈ M3. To do this, it would be useful to know something about the

structure of a vertex transitive self-complementary k-hypergraph of prime order. To

that end, in Chapter 5 we use group-theoretic results due to Burnside and Zassenhaus

to determine the automorphisms and antimorphisms of these objects. Then we use

this information to generate all such hypergraphs under certain conditions.



Chapter 5

Transitive self-complementary

hypergraphs of prime order

In this chapter, we determine the automorphisms and antimorphisms of the vertex

transitive self-complementary k-hypergraphs of prime order p in the case where p ≡
1 (mod 2`+1) and k = 2` or k = 2` + 1, and we present an algorithm for generating

all of these structures. As a consequence, we obtain a bound on the number of

pairwise non-isomorphic vertex transitive self-complementary graphs of prime order

p ≡ 1 (mod 4).

5.1 Preliminaries - some group theory

In this section, we introduce some notation, and a couple of preliminary group-

theoretic results.

For a prime p, let F∗p denote the multiplicative group of units of the finite field

Fp of order p. Given a ∈ F∗p and b ∈ Fp, define the mapping Ta,b : Fp → Fp by

Ta,b : x 7→ ax + b. One can show that Ta,b is a permutation of Fp, and that {Ta,b : a ∈
F∗p , b ∈ Fp} is a group, called the affine linear group of permutations acting on Fp.

72
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This group will be denoted by AGL1(p).

If H is a subgroup of a group G, we will denote this by H ≤ G. Two permutation

groups G ≤ Sym(Ω) and H ≤ Sym(Π) are equivalent if there exist bijections α : Ω →
Π and β : G → H such that

g : v 7→ w ⇐⇒ gβ : vα 7→ wα,

for all g ∈ G and all v, w ∈ Ω, and we denote this by G ≡ H. A permutation group

G acting on a finite set Ω is sharply transitive if for any two points v, w ∈ Ω, there

is exactly one permutation g ∈ G such that vg = w. The group G is sharply doubly

transitive if G is sharply transitive in its action on ordered pairs of distinct elements

from Ω.

The following two theorems due to Burnside [35] and Zassenhaus [38] will be

used to restrict the automorphism group of a vertex transitive k-hypergraph of prime

order.

Theorem 5.1.1 [35] If G is a transitive permutation group acting on a prime number

p of elements, then either G is doubly transitive or

G ≡ {Ta,b : a ∈ H ≤ F∗p , b ∈ Fp}.

Theorem 5.1.2 [38, 11] A sharply doubly transitive permutation group of prime

degree p is equivalent as a permutation group to AGL1(p).

We will also require the following useful and well-known counting tool, called the

orbit-stabilizer lemma.

Lemma 5.1.3 [35] Let G be a permutation group acting on V and let x be a point

in V . Then

|G| = |Gx||xG|.
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5.2 A characterization

Now we are ready to determine the automorphisms and antimorphisms of the vertex

transitive self-complementary k-hypergraphs of prime order p in the cases where p ≡
1 (mod 2`+1) and k = 2` or k = 2` + 1.

Lemma 5.2.1 Let ` be a positive integer, and suppose that k = 2` or k = 2` + 1. If

X is a vertex transitive self-complementary k-hypergraph of prime order p ≡ 1 (mod

2`+1), then Ant(X) ∪ Aut(X) is equivalent as a permutation group to a subgroup of

AGL1(p). That is

Ant(X) ∪ Aut(X) ≡ {Ta,b : a ∈ G ≤ F∗p , b ∈ Fp}.

Proof: Since X is vertex transitive, it follows that Aut(X) and Ant(X) ∪ Aut(X)

are both transitive permutation groups acting on a prime number of elements. Since

p ≡ 1 (mod 2`+1), Theorem 3.1.4 implies that X is not doubly transitive, and so by

Burnside’s Theorem,

Aut(X) ≡ {Ta,b : a ∈ H ≤ F∗p , b ∈ Fp} (5.2.1)

for some subgroup H of F∗p. Now since AGL1(p) is doubly transitive and X is not

doubly transitive, we have Aut(X) 6≡ AGL1(p). Hence H is a proper subgroup of F∗p in

Equation (5.2.1), and so |H| ≤ (p− 1)/2. Thus |Aut(X)| = p|H| ≤ p(p− 1)/2. Since

Aut(X) is an index-2 subgroup of Aut(X) ∪ Ant(X), we have |Aut(X) ∪ Ant(X)| =
2|Aut(X)| ≤ p(p− 1).

If Aut(X) ∪Ant(X) is not doubly transitive, then the result follows from Burn-

side’s Theorem 5.1.1. On the other hand, if Aut(X) ∪ Ant(X) is doubly transitive,

then certainly |Aut(X)∪Ant(X)| ≥ p(p−1), which implies that |Aut(X)∪Ant(X)| =
p(p− 1). Hence Aut(X) ∪ Ant(X) must be sharply doubly transitive, and so in this

case the result follows from Zassenhaus’ Theorem 5.1.2.
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In the next lemma, we completely determine the set of automorphisms and anti-

morphisms of the Paley k-hypergraphs of Construction 4.2.4 which have prime order.

Lemma 5.2.2 Let ` be a positive integer, and suppose that k = 2` or k = 2` +1. Let

p be a prime such that p ≡ 1 (mod 2`+1). Let r be a divisor of (p− 1)/2`+1, and let

X = Pp,k,r be the Paley k-hypergraph defined in Construction 4.2.4. Let S be the set

of elements s ∈ {1, 2, . . . , p − 1} such that s
(

k
2

)
is a multiple of c = gcd(p − 1, r

(
k
2

)
),

and let s′ = gcd{s : s ∈ S}. Then

Aut(X) = {Ta,b : a ∈ 〈ω2s′〉 ≤ F∗p , b ∈ Fp}

and

Ant(X) ∪ Aut(X) = {Ta,b : a ∈ 〈ωs′〉 ≤ F∗p , b ∈ Fp},

where ω is a generator of F∗p.

Proof: Since Ta,b is equal to the permutation αa,b defined on page 63, Lemma 4.2.6(4)

guarantees that

{Ta,b : a ∈ F∗q, b ∈ Fq} ∩ (Aut(X) ∪ Ant(X)) = 〈Tωs′ ,0, T1,1〉.

On the other hand, Lemma 5.2.1 implies that

Ant(X) ∪ Aut(X) ≡ {Ta,b : a ∈ G ≤ F∗p , b ∈ Fp}

for some subgroup G of F∗p. We conclude that

Ant(X) ∪ Aut(X) = {Ta,b : a ∈ 〈ωs′〉 ≤ F∗p , b ∈ Fp}.

Since Aut(X) is an index-2 subgroup of Ant(X) ∪ Aut(X), it follows that

Aut(X) = {Ta,b : a ∈ 〈ω2s′〉 ≤ F∗p , b ∈ Fp}.



5.2. A characterization 76

Theorem 5.2.3

Suppose X = (V,E) is a vertex-transitive self-complementary k-hypergraph of prime

order p, where k = 2` or k = 2` + 1 and p ≡ 1 (mod 2`+1). Let ω be a generator

of Fp, and let r = p(p − 1)/|Aut(X) ∪ Ant(X)|. Then X is isomorphic to a k-

hypergraph Y with vertex set Fp for which Aut(Y ) = 〈Tω2r,0, T1,1〉 ≤ Aut(Pp,k,r) and

Ant(Y ) ∪ Aut(Y ) = 〈Tωr,0, T1,1〉 ≤ Ant(Pp,k,r) ∪ Aut(Pp,k,r). Consequently, Y is in

the θ-switching class of Pp,k,r for every permutation θ ∈ {Tωrm,b : m odd, b ∈ Fp}.

Proof: By Lemma 5.2.1,

Ant(X) ∪ Aut(X) ≡ {Ta,b : a ∈ G ≤ F∗p , b ∈ Fp},

and Aut(X) is an index-2 subgroup of this group, so

Aut(X) ≡ {Ta,b : a ∈ K ≤ F∗p , b ∈ Fp},

where K is an index-2 subgroup of G. Thus there is a bijection ϕ : V → Fp such that

Y = (ϕ(V ), ϕ(E)) satisfies

Ant(Y ) ∪ Aut(Y ) = {Ta,b : a ∈ G ≤ F∗p , b ∈ Fp},

and

Aut(Y ) = {Ta,b : a ∈ K ≤ F∗p , b ∈ Fp}.

Now |Ant(Y ) ∪ Aut(Y )| is even, and its order divides p(p− 1). Since

r =
p(p− 1)

|Ant(Y ) ∪ Aut(Y )| =
p(p− 1)

|Ant(X) ∪ Aut(X)|
and ω is a generator of F∗p, it follows that G = 〈ωr〉 and K = 〈ω2r〉. If r is a divisor

of (p−1)
2`+1 , then Pp,k,r exists and Aut(Y ) = 〈Tω2r,0, T1,1〉 ≤ Aut(Pp,k,r) and Ant(Y ) ∪

Aut(Y ) = 〈Tωr,0, T1,1〉 ≤ Ant(Pp,k,r) ∪ Aut(Pp,k,r). Consequently, Y is in the θ-

switching class of Pp,k,r for every θ ∈ 〈Tωr,0, T1,1〉 \ 〈Tω2r,0, T1,1〉 = {Tωrm,b : m odd, b ∈
Fp}.
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It remains to show that r = p(p−1)
|Aut(X)∪Ant(X)| is a divisor of (p− 1)/2`+1. First we

will show that both of the integers p and 2` divide |Aut(Y )|. We have Aut(Y ) =

{Ta,b : a ∈ K ≤ F∗p , b ∈ Fp}, which contains the subgroup {T1,b : b ∈ Fp} of

order p, and so p divides |Aut(Y )|. Now let θ ∈ Ant(Y ). Then θ has even order in

Ant(Y )∪Aut(Y ), so |θ| = 2js for some positive integer j and some odd positive integer

s. Now θs ∈ Ant(Y ) and θs has order 2j, so Lemma 2.2.8 implies that θs has exactly

one fixed point, and all other orbits of θs have length divisible by 2`+1. Hence the order

of the antimorphism θs is divisible by 2`+1, and so |Aut(Y )∪Ant(Y )| = 2|Aut(Y )| is

divisible by 2`+1. It follows that 2` divides |Aut(Y )|.
Now observe that

r =
p(p− 1)

|Aut(X) ∪ Ant(X)| =
p(p− 1)

|Aut(Y ) ∪ Ant(Y )| =
p(p− 1)2`+1

2|Aut(Y )|2`+1

=⇒ p− 1

2`+1
= r

( |Aut(Y )|
p2`

)
. (5.2.2)

Since |Aut(Y )| is divisible by the odd prime p, and |Aut(Y )| is also divisible by 2`, it

follows that |Aut(Y )|
p2` is an integer. Hence Equation (5.2.2) implies that r divides the

integer p−1
2`+1 . This completes the proof.

5.3 Generating transitive k-hypergraphs

In this section, we present an algorithm for generating all vertex transitive self-com-

plementary k-hypergraphs of prime order p ≡ 1 (mod 2`+1) in the case where k = 2`

or k = 2` + 1.

Algorithm 5.3.1

Let ` be a positive integer, and suppose that k = 2` or k = 2` + 1. Let p be a prime

such that p ≡ 1 (mod 2`+1). Let ω be a generator of F∗p.
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1. Choose a divisor r of (p− 1)/2`+1, let Pp,k,r be the Paley k-hypergraph of order

p, and let θ = Tωr,0.

(a) Take an arbitrary uncoloured element A of F(k)
p . In Steps (i), (ii) and (iii)

below, we will find the orbit O = A〈Tωr,0,T1,1〉 of the group 〈Tωr,0, T1,1〉 on

F(k)
p which contains A.

(i) Create a sequence of elements of F(k)
p

A, Aθ, Aθ2

, Aθ3

, . . . , Aθ|θ|−1

. (5.3.1)

If A ∈ E(Pp,k,r), then colour the elements of the form Aθ2i
red and

those of the form Aθ2i+1
blue. If A 6∈ E(Pp,k,r), then colour the

elements of the form Aθ2i
blue and those of the form Aθ2i+1

red.

(ii) Repeat Step 1(a)(i) but replace A with an element of A〈Tωr,0,T1,1〉

which is uncoloured.

(iii) Repeat Step 1(a)(ii) until all elements of A〈Tωr,0,T1,1〉 have been coloured.

(b) Repeat Step 1(a) until all of the elements of F(k)
p have been coloured.

(c) Let m be the number of orbits of the group 〈Tωr,0, T1,1〉 on F(k)
p created

in Steps 1(a) and 1(b), and choose an ordering O1,O2, . . . ,Om of these

orbits.

(i) Choose a vector v ∈ Zm
2 , and let Xr

v be the k-hypergraph with vertex

set Fp and edge set E, where an edge e ∈ Oi is in E

if and only if e is red and vi = 1, or e is blue and vi = 0.

(ii) Repeat step 2(c)(i) for all vectors v ∈ Zm
2 .

2. Repeat step 1 for all divisors r of (p− 1)/2`+1.

Lemma 5.3.2 The colouring of the elements of F(k)
p in Algorithm 5.3.1 is well de-

fined.
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Proof: Lemma 4.2.6(3) guarantees that θ = Tωr,0 is an antimorphism of the Paley k-

hypergraph Pp,k,r, and so θ is a k-complementing permutation. Thus Proposition 2.1.1

guarantees that no element of the sequence (5.3.1) in Step 1(a)(i) is coloured both

red and blue. Also, since the orbits of θ partition the elements of V (k), no k-subset

of V can occur in more than one sequence (5.3.1) created in Step 1(a)(i). Hence no

element of F(k)
p is coloured both red and blue in steps 1(a) and 1(b).

Theorem 5.3.3 Let ` be a positive integer, and suppose that k = 2` or k = 2` + 1.

Let p be a prime such that p ≡ 1 (mod 2`+1). Let X be a k-hypergraph of order p.

Then X is vertex transitive and self-complementary if and only if X is isomorphic to

a k-hypergraph generated by Algorithm 5.3.1.

Proof: (⇒) Suppose that X is a vertex transitive self-complementary k-hypergraph

of order p. By Theorem 5.2.3, X is isomorphic to a k-hypergraph Y with vertex set Fp

for which Aut(Y ) = 〈Tω2r,0, T1,1〉 ≤ Aut(Pp,k,r) and Ant(Y )∪Aut(Y ) = 〈Tωr,0, T1,1〉 ≤
Ant(Pp,k,r) ∪ Aut(Pp,k,r), where r = p(p − 1)/|Aut(X) ∪ Ant(X)|. We will obtain Y

from Pp,k,r using Algorithm 5.3.1.

Certainly Pp,k,r is generated by Algorithm 5.3.1, since Pp,k,r = Xr
1. Now we will

show how Y can be generated by Algorithm 5.3.1 from Pp,k,r. By Theorem 5.2.3, Y is

in the θ-switching class of Pp,k,r for every permutation θ ∈ {Tωrm,b : m odd, b ∈ Fp}.
In particular, Y is Tω,0-switching equivalent to Pp,k,r. That is, Y can be obtained

from Pp,k,r by changing edges to nonedges, and vice versa, in some collection S of

orbits of Tω,0 on F(k)
p . Moreover, since Aut(Y ) = 〈Tω2r,0, T1,1〉, the collection S must

also be equal to a union of orbits of 〈Tω2r,0, T1,1〉 on F(k)
p . Hence S is a union of or-

bits of 〈Tωr,0, Tω2r,0, T1,1〉 = 〈Tωr,0, T1,1〉 on F(k)
p . This implies that Y can be obtained

from Pp,k,r by changing edges to nonedges, and vice versa, in a subset S of the orbits

O1,O2, . . . ,Om given by Algorithm 5.3.1. Let v ∈ Zm
2 be the vector such that vi = 1
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if and only if Oi ∈ S. Then Y = Xr
1+v. Since X ∼= Y , we have X ∼= Xr

1+v, and so X

is isomorphic to a k-hypergraph generated by Algorithm 5.3.1.

(⇐) Suppose that X is a k-hypergraph of order p that is isomorphic to a k-hy-

pergraph generated by Algorithm 5.3.1. We will show that X is vertex transitive and

self-complementary. Now X ∼= Xr
v for some divisor r of (p−1)/2`+1 and some v ∈ Zm

2 ,

where m is the number of orbits of the group 〈Tωr,0, T1,1〉 on F(k)
p . The k-hypergraph

Xr
v is constructed by choosing either the red or the blue edges from each of the orbits

in {O1,O2, . . . ,Om}. Our coloring method in Step 1(a) guarantees that each of the

set of red edges and the set of blue edges in Oi constitutes an orbit of 〈Tω2r,0, T1,1〉
on F(k)

p , for all i ∈ {1, 2, . . . , m}. This implies that 〈Tω2r,0, T1,1〉 ≤ Aut(Xr
v ). Since

〈T1,1〉 ≤ 〈Tω2r,0, T1,1〉, and 〈T1,1〉 acts transitively on Fp, we conclude that Aut(Xr
v )

acts transitively on V (Xr
v ) = Fp, and so Xr

v is vertex transitive. Our coloring method

in Step 1(a) also guarantees that Tωr,0 maps red edges onto blue edges, and vice versa,

in the orbit Oi, for all i ∈ {1, 2, . . . , m}. This implies that Tωr,0 ∈ Ant(Xr
v ), and so

Xr
v is self-complementary.

Hence Xr
v is a vertex transitive self-complementary k-hypergraph of order p, and

since X ∼= Xr
v , so is X.

When k = 2 or k = 3, Theorem 3.1.4 guarantees that for every vertex transitive

self-complementary k-hypergraph of prime order p, we must have p ≡ 1 (mod 4).

Hence Algorithm 5.3.1 generates every vertex transitive self-complementary graph

and 3-hypergraph of prime order. In addition, for the case k = 2 it is possible to count

the orbits of the group 〈Tωr,0, T1,1〉 on F(k)
p , and consequently we obtain a bound on

the number of pairwise non-isomorphic vertex transitive self-complementary graphs

of order p.
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Corollary 5.3.4 For any prime p ≡ 1 (mod 4), there are at most

∑

r| p−1
4

2r−1

pairwise non-isomorphic vertex transitive self-complementary graphs of order p.

Proof: Let r be a divisor of (p−1)/4. Then gcd(p−1, r) = r. Let ω be a generator of

Fp. For each i = 0, 1, . . . , 2r−1, let Ei = {e ∈ F(2)
p : V M(e) ∈ ωi〈ω2r〉}. We will prove

that each of the orbits of the group 〈Tωr,0, T1,1〉 on F(2)
p has the form Ei∪Ei+r, for some

i = 0, 1, . . . , r − 1. For a given divisor r of (p − 1)/4, Algorithm 5.3.1 generates at

most 2m−1 pairwise non-isomorphic graphs X with Aut(X) ∪ Ant(X) = 〈Tωr,0, T1,1〉,
where m is the number of orbits of 〈Tωr,0, T1,1〉 on F(2)

p . Finding these orbits explicitly

will lead us to conclude that m = r for each divisor r of (p− 1)/4, and so the result

will follow.

First we show that each element of {Tωrm,b : m odd, b ∈ Fp} maps edges of Ei to

edges of Ei+r, where addition of subscripts is addition modulo 2r. Let θ = Tωrm,b for

some odd integer m and some b ∈ Fp. Now if {x, y} ∈ Ei, then V M({x, y}) ∈ ωi〈ω2r〉.
Hence V M({x, y}θ) = xθ − yθ = ωmr(x − y) = ωmrV M({x, y}) ∈ ωi+r〈ω2r〉. Thus

{x, y}θ ∈ Ei+r.

Now let G = 〈Tω2r,0, T1,1〉. We show that each element of G maps edges of Ei

to edges of Ei. Let α ∈ G. Let α = Tω2rm,b for some integer m and some b ∈ Fp.

Now if {x, y} ∈ Ei, then V M({x, y}) ∈ ωi〈ω2r〉. Hence V M({x, y}α) = xα − yα =

ω2rm(x− y) = ω2rmV M({x, y}) ∈ ωi〈ω2r〉. Thus {x, y}α ∈ Ei. Hence Eα
i = Ei, for all

α ∈ G.

Hence G = 〈Tω2r,0, T1,1〉maps edges of Ei onto edges of Ei, and {Tωrm,b : m odd, b ∈
Fp} maps edges of Ei to edges of Ei+r. This implies that each orbit of 〈Tωr,0, T1,1〉 on

F(2)
p is contained in Ei ∪ Ei+r, for some i ∈ {0, 1, . . . , r − 1}.

Next we prove that 〈Tωr,0, T1,1〉 acts transitively on Ei∪Ei+r, for all i = 0, 1, . . . , r−
1. It suffices to show that G = 〈Tω2r,0, T1,1〉 acts transitively on the set of edges Ei,
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for all i = 0, 1, . . . , 2r − 1. Since G = 〈Tω2r,0, T1,1〉, we have |G| = p(p − 1)/2r. Now

fix {x, y} ∈ F(2)
p . Recall that the group AGL1(p) acting on Fp is sharply doubly

transitive. Since G ≤ AGL1(p), it follows that at most two permutations in G fix

{x, y}. Hence by the orbit-stabilizer Lemma 5.1.3, we obtain

|{x, y}G| = |G|/|G{x,y}| ≥ |G|/2 = p(p− 1)/4r. (5.3.2)

Also, for integers i and j such that 0 ≤ i, j ≤ 2r− 1, we have |Ei| = |Ej|. This implies

that each of the edge sets Ei has size

|Ei| = |F(2)
p |/2r = p(p− 1)/4r. (5.3.3)

Now (5.3.2) and (5.3.3) together imply that

|{x, y}G| ≥ |Ei|, for all i ∈ {0, 1, . . . , 2r − 1}. (5.3.4)

Since each orbit of G on F(2)
p is contained in Ei for some i, and (5.3.4) implies that

each orbit of G on F(2)
p has cardinality at least |Ei| for all i, it follows that each orbit

of G on F(2)
p is equal Ei for some i. Hence G acts transitively on the set of edges Ei,

for all i = 0, 1, . . . , 2r− 1. This implies that 〈Tωr,0, T1,1〉 acts transitively on Ei ∪Ei+r,

for all i = 0, 1, . . . , r − 1.

Since each orbit of 〈Tωr,0, T1,1〉 is contained in Ei ∪ Ei+r for some i, the fact that

〈Tωr,0, T1,1〉 acts transitively on Ei ∪Ei+r implies that each orbit of 〈Tωr,0, T1,1〉 on F(2)
p

is equal to Ei ∪ Ei+r for some i = 0, 1, . . . , r − 1. There are exactly r such orbits,

and so m = r in step 1(c) of Algorithm 5.3.1. Thus for each divisor r of (p − 1)/4,

Algorithm 5.3.1 generates exactly |Zr
2| = 2r vertex transitive self-complementary

graphs of order p. Now every graph generated by the algorithm is isomorphic to its

complement, which is also generated by the algorithm. It follows that there are at

most
∑

r| p−1
4

2r−1
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pairwise non- isomorphic vertex transitive self-complementary graphs of order p.

5.4 Open problems

In this section, the author proposes two open problems.

When neither k nor k−1 is a power of 2, not much is known about the structure of

vertex transitive k-uniform hypergraphs of prime order p. However, using Burnside’s

Theorem, one may solve the following problem by examining the structure of doubly

transitive permutation groups.

Problem 5.4.1 Let p be prime, and let k be a positive integer, k ≤ p−1. Characterize

the structure of vertex transitive self-complementary k-uniform hypergraphs of order

p.

In [9], Dobson proved the following analogue to Burnside’s characterization of

transitive groups of prime degree for transitive groups of prime power degree.

Theorem 5.4.2 [9] A transitive group of odd prime-power degree such that every

minimal transitive subgroup is cyclic is either doubly transitive (and hence known) or

contains a normal Sylow p-subgroup.

One may use Dobson’s theorem to prove an analogue to Theorem 5.2.3 for uni-

form hypergraphs of prime power order. The author poses the following problem.

Problem 5.4.3 Characterize the structure of the vertex transitive self-complemen-

tary k-uniform hypergraphs of prime power order.

In the case where n = pr ≡ 1 (mod 2`+1) for the largest element ` in the support

of the binary representation of k, Theorem 3.1.4 implies that a self-complementary

k-hypergraph X of order n cannot be 2-subset-regular, and hence cannot be doubly
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transitive. Therefore, if the automorphism group of X contains a cycle of length pr,

then it contains a normal Sylow p-subgroup. Examining the structure of such groups

may lead to a partial solution to Problem 5.4.3.



Part II

Self-complementary nonuniform

hypergraphs

85



Chapter 6

Introduction

6.1 Definitions

For a positive integer n ≥ 2 and a nonempty subset K of {1, 2, . . . , n − 1}, a K-hy-

pergraph (V,E) of order n is a hypergraph with vertex set V and edge set

E =
⋃

k∈K

Ek, where Ek ⊆ V (k) for all k ∈ K.

The complement XC of the K-hypergraph X = (V,E) is the K-hypergraph with

vertex set V (XC) = V and edge set E(XC) =
⋃

k∈K V (k) \ E. An isomorphism

between two K-hypergraphs X = (V,E) and Y = (W,F ) is a bijection from V to W

which induces a bijection from E to F . If such a bijection exists, we say that X and

Y are isomorphic. The K-hypergraph X is called self-complementary if X and XC

are isomorphic. An isomorphism from a self-complementary K-hypergraph X to its

complement XC is called an antimorphism of X, and as usual we denote the set of

antimorphisms of X by Ant(X). For each k in the rank set K of a K-hypergraph X,

let Xk denote the subhypergraph of X induced by the edges of X of rank k. Note that

if X is self-complementary, then the k-hypergraph Xk is self-complementary for all

k ∈ K. Since any bijection maps edges of size k onto edges of size k, a permutation

86
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θ is an antimorphism of X if and only if θ is an antimorphism of Xk for all k ∈ K.

Thus Ant(X) =
⋂

k∈K Ant(Xk). Hence we have the following characterization of

self-complementary K-hypergraphs.

Proposition 6.1.1 A K-hypergraph X = (V,E) is self-complementary if and only

if both of the following conditions hold.

(1) The subhypergraph Xk is a self-complementary k-hypergraph for all k ∈ K.

(2) The self-complementary subhypergraphs Xk, for all k ∈ K, share a common

antimorphism θ. That is,
⋂

k∈K Ant(Xk) 6= ∅.

A K-hypergraph X = (V,E) is t-subset-regular if, for all k ∈ K, the subhyper-

graph Xk = (V,Ek) induced by the edges of size k is t-subset-regular. An automor-

phism of a K-hypergraph X is an isomorphism from X to X, and as usual we denote

the group of automorphisms of a K-hypergraph X by Aut(X). A K-hypergraph

X = (V, E) is t-fold-transitive, or simply t-transitive, if Aut(X) acts transitively on

the set of ordered t-tuples of pairwise distinct elements of V . A 1-transitive K-hy-

pergraph is called vertex transitive, and a 2-transitive K-hypergraph is called doubly

transitive. In the language of design theory, the t-subset-regular self-complementary

K-hypergraphs correspond to large sets of two isomorphic t-wise balanced designs, or

t-partitions, in which the block sizes lie in the set K.

6.2 History and layout of part II

Szymański first introduced the notion of a self-complementary (non-uniform) hyper-

graph of order n in 2006 [31]. He defined it to be a self-complementary K-hypergraph

for K = {1, 2, . . . , n− 1}.
The following theorem provides necessary and sufficient conditions on the order

of a self-complementary K-hypergraph for K = {1, 2, . . . , n−1}. The result was first
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conjectured by Szymański [31], who verified the result by computer for n ≤ 1000.

The theorem was then proved by Zwonek [39].

Theorem 6.2.1 [39] Let K = {1, 2, . . . , n − 1}. There exists a self-complementary

K-hypergraph of order n if and only if n = 2` for some positive integer `.

Actually, Zwonek proved the following stronger result.

Theorem 6.2.2 [39]

1. Let K = {1, 2, . . . , n− 1}. If X is a self-complementary K-hypergraph of order

n, then n = 2` for some positive integer `.

2. If |V | = 2`, then a permutation θ ∈ Sym(V ) is a k-complementing permutation

for all k ∈ {1, 2, . . . , 2` − 1} if and only if θ is a cycle of length 2`.

Observe that a self-complementary k-hypergraph is a self-complementary K-hy-

pergraph for K = {k}. Hence the concept of a self-complementary K-hypergraph is

a generalization of the previous concepts of self-complementary k-hypergraphs and

Szymański’s self-complementary non-uniform hypergraphs, as these structures are the

two extreme cases of self-complementary K-hypergraphs.

In Part II of the thesis, we will examine the possible orders of self-complemen-

tary K-hypergraphs for various sets of positive integers K. The results in Part II

rely on the necessary and sufficient conditions on the orders of self-complementary

k-hypergraphs obtained in Part I of the thesis.

Part II is broken up into three chapters. In Chapter 7, we derive some necessary

conditions on the order of self-complementary K-hypergraphs, and show that these

conditions are sufficient in certain cases. In Chapters 8 and 9, we give a similar

analysis of the orders of t-subset-regular self-complementary K-hypergraphs and t-

fold-transitive self-complementary K-hypergraphs, respectively.



Chapter 7

Self-complementary K-hypergraphs

7.1 Necessary conditions on order

In this section, we obtain some necessary conditions on the order of a self-comple-

mentary K-hypergraph for certain sets K of positive integers.

Theorem 7.1.1 Let n ≥ 2 be an integer, and let K ⊆ {1, 2, . . . , n − 1}, K 6= ∅.
Suppose that there exists a self-complementary K-hypergraph with n vertices.

(1) If K contains a nonempty subset

L = {2` + 1, 2`+1 + 1, . . . , 2`+r + 1}

for some integers `, r with ` ≥ 1 and r ≥ 0, then n is even or

n[2`+r+1] ∈ {0, 1, . . . , 2`}.

(2) If K contains a nonempty subset

M = {2`, 2`+1, . . . , 2`+r}

for some integers `, r with ` ≥ 1 and r ≥ 0, then

n[2`+r+1] ∈ {0, 1, . . . , 2` − 1}.
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Proof: We prove the results by induction on r.

When r = 0, both results (1) and (2) follow directly from Corollary 2.3.3. Now

suppose that r is a positive integer, and assume that both results (1) and (2) hold

for r − 1. Suppose that X is a self-complementary K-hypergraph with n vertices.

(1) If K contains a nonempty subset

L = {2` + 1, 2`+1 + 1, . . . , 2`+r + 1}

for some positive integer `, then the self-complementary subhypergraph of X

induced by edges with sizes in L̂ = L \ {2`+r + 1} has order n and satisfies the

hypothesis of condition (1) for r − 1. Hence by the induction hypothesis,

n is even or n[2`+(r−1)+1] ∈ {0, 1, . . . , 2`}. (7.1.1)

Also, the subhypergraph of X induced by the edges of size 2`+r + 1 is a self-

complementary (2`+r + 1)-hypergraph of order n, and so Corollary 2.3.3 implies

that

n is even or n[2`+r+1] ∈ {0, 1, . . . , 2`+r}. (7.1.2)

If n is not even, then (7.1.2) guarantees that n[2`+r+1] < 2`+r, which implies that

n[2`+r+1] = n[2`+r], and so (7.1.2) guarantees that n[2`+r+1] ∈ {0, 1, . . . , 2`}. Hence

either n is even or n[2`+r+1] ∈ {0, 1, . . . , 2`}, and so (1) holds for r. Thus by the

principle of mathematical induction, (1) holds for all r ≥ 0.

(2) If K contains a nonempty subset M = {2`, 2`+1, . . . , 2`+r} for some positive in-

teger `, then the self-complementary subhypergraph of X induced by the edges

with sizes in M̂ = M \{2`+r} has order n and satisfies the hypothesis of condition

(2) for r − 1. Hence by the induction hypothesis,

n[2`+(r−1)+1] ∈ {0, 1, . . . , 2` − 1}. (7.1.3)
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Also, the subhypergraph of X induced by the edges of size 2`+r is a self-comple-

mentary 2`+r-hypergraph of order n, and so Corollary 2.3.3 implies that

n[2`+r+1] ∈ {0, 1, . . . , 2`+r − 1}. (7.1.4)

Now conditions (7.1.3) and (7.1.4) together imply that the result in (2) holds for

r. Thus by the principle of mathematical induction, (2) holds for all r ≥ 0.

7.2 Sufficient conditions on order

In this section, we use the characterization of the lengths of the orbits of a k-com-

plementing permutation in Theorem 2.2.5 to obtain some sufficient conditions on the

order of self-complementary K-hypergraphs, for various sets K.

In the first theorem, we show that the necessary conditions in Theorem 7.1.1 are

also sufficient in the cases where L = K or M = K.

Theorem 7.2.1 Let n ≥ 2 be an integer, and let L and M be nonempty subsets of

{1, 2, . . . , n− 1}.

(1) If L = {2` + 1, 2`+1 + 1, . . . , 2`+r + 1} for some integers `, r with ` ≥ 1 and r ≥ 0,

then there exists a self-complementary L-hypergraph of order n whenever n is

even or n[2`+r+1] ∈ {0, 1, . . . , 2`}.

(2) If M = {2`, 2`+1, . . . , 2`+r} for some integers `, r with ` ≥ 1 and r ≥ 0, then

there exists a self-complementary M-hypergraph of order n whenever n[2`+r+1] ∈
{0, 1, . . . , 2` − 1}.

Proof: It suffices to show the following:

(i) If n is even, then there exists a permutation in Sym(n) that is k-complementing

for all k ∈ L.
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(ii) If n[2`+r+1] ∈ {0, 1, . . . , 2`}, then

(a) there exists a permutation in Sym(n) that is k-complementing for all k ∈ L,

and

(b) if n[2`+r+1] < 2`, then there exists a permutation in Sym(n) that is k-com-

plementing for all k ∈ M .

(i) Suppose that n is even, say n = 2m for a positive integer m, and let θ ∈ Sym(n)

such that θ has m orbits of length 2. Fix k ∈ L, and let b be the binary

representation of k. We will use Theorem 2.2.5 to show that θ is a k-comple-

menting permutation. Let V = {1, 2, . . . , n}, let A = ∅ and let B = V . Then

A ∩ B = ∅, A ∪ B = V , and A and B are both equal to unions of orbits of θ.

Moreover, since k ∈ L, we have 0 ∈ supp(b). Now |A| = 0 < k[20+1], and it is

vacuously true that every cycle of θ|A has length 2r for some integer r < 0, so

condition (I) of Theorem 2.2.5 holds for A with ` = 0. Also, every cycle of θ|B
has length 2 = 21, and so as 1 > 0, condition (II) of Theorem 2.2.5 holds for

B with ` = 0. Hence Theorem 2.2.5 guarantees that θ is a k-complementing

permutation, and since k was an arbitrary element of L, θ is a k-complementing

permutation for all k ∈ L. Hence (i) holds.

(ii) Now suppose that n ≡ j (mod 2`+r+1) for some j ∈ {0, 1, . . . , 2`}, say n =

m2`+r+1 + j. Let σ ∈ Sym(n) such that σ has m orbits of length 2`+r+1 and j

fixed points. Fix k ∈ L ∪M , and let b be the binary representation of k. Now

k = 2`+i or k = 2`+i + 1 for some i ∈ {0, 1, . . . , r}, and so ` + i ∈ supp(b).

To prove (a) and (b), we will use Theorem 2.2.5 to show that σ is a k-comple-

menting permutation for k = 2`+i + 1, and for k = 2`+i + 1 when j < 2`. Let

V = {1, 2, . . . , n}, let A be the set of j fixed points of σ, and let B be the set

of elements of V which lie in a cycle of σ of length 2`+r+1. Then A and B are

both equal to unions of orbits of σ, and A ∪ B = V . Since 2`+r+1 > 1, we also
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have A ∩B = ∅.

First we will show that conditions (I) of Theorem 2.2.5 holds for σ with the set

A and the element ` + i ∈ supp(b), under the conditions of (a) and (b).

(a) k ∈ L and j ≤ 2`. Then k = 2`+i +1. In this case |A| = j ≤ 2` < 2`+i +1 =

k[2`+i+1], and so condition (I) holds for A with the element ` + i ∈ supp(b).

(b) k ∈ M and j < 2`. Then k = 2`+i. Hence |A| = j < 2` ≤ 2`+i = k[2`+i+1],

and so condition (I) holds for A with the element ` + i ∈ supp(b) in this

case also.

Now observe that, in both cases (a) and (b) above, every cycle of σ |B has length

2`+r+1, and the fact that r ≥ i guarantees that `+r+1 > `+ i. Hence condition

(II) of Theorem 2.2.5 holds for σ with the set B and the element `+ i ∈ supp(b),

in both cases (a) and (b). Thus Theorem 2.2.5 guarantees that σ is a k-comple-

menting permutation in both cases. It follows that (ii)(a) and (ii)(b) both hold.

This completes the proof.

Let N2 denote the set of positive integers which are sums of consecutive powers

of 2. That is,

N2 = {1, 2, 2 + 1, 22, 22 + 2, 22 + 2 + 1, 23, 23 + 22, 23 + 22 + 2, 23 + 22 + 2 + 1, . . .}.

In the next theorem, we will use Corollary 2.3.4 to obtain necessary conditions on

the order of self-complementary K-hypergraphs in the case where K contains a set

K̂ of consecutive elements from N2, and we show that these necessary conditions are

sufficient when K̂ = K.

Theorem 7.2.2 Let K be a set of positive integers, let kmax = max{k : k ∈ K},
and let n be an integer such that n ≥ kmax + 1. Suppose that K contains a nonempty
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subset K̂ of consecutive elements in N2. Let k∗ = max{k : k ∈ K̂} and let k∗ =

min{k : k ∈ K̂}. Let b∗ and b∗ be the binary representation of k∗ and k∗, respectively.

Let `∗ and `∗ denote the largest elements in supp(b∗) and supp(b∗), respectively.

(1) If there exists a self-complementary K-hypergraph of order n, then n[2`∗+1] < k∗.

(2) If K = K̂, then there exists a self-complementary K-hypergraph of order n if and

only if n[2`∗+1] < k∗.

Proof:

(1) Suppose that there exists a self-complementary K-hypergraph X of order n. We

will show that n[2`∗+1] < k∗ by induction on `∗ − `∗. Note that by the definition

of N2, since k∗ ≥ k∗, we have `∗ ≥ `∗.

Base Step: If `∗ − `∗ = 0, then

K̂ =

{
`∗∑

i=c

2i,

`∗∑
i=c−1

2i, . . . ,

`∗∑

i=c−d

2i

}

for some nonnegative integers c, d such that 0 ≤ c − d ≤ c ≤ `∗. Now for each

k ∈ K̂, the self-complementary subhypergraph Xk of X induced by the edges

with size k has order n, and hence Corollary 2.3.4 implies that n[2`∗+1] < k for all

k ∈ K̂. Thus n[2`∗+1] < min{k : k ∈ K̂} = k∗, as required.

Induction Step: Let r be an integer, r ≥ 1.

• Induction Hypothesis: If K contains a nonempty subset M̂ of consecutive

elements in N2, m∗ = max{k : k ∈ M̂}, m∗ = min{k : k ∈ M̂}, a∗ and a∗

denote the largest elements in the supports of the binary representations of

m∗ and m∗, respectively, and a∗ − a∗ = r − 1, then n[2a∗+1] < m∗.
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Now suppose that `∗ − `∗ = r. Let bk denote the binary representation of a

positive integer k. Let

M = {k ∈ K̂ : max{i : i ∈ supp(bk)} = `∗},

and let M̂ = K̂ \M . Let m∗ = max{k : k ∈ M̂}, let m∗ = min{k : k ∈ M̂} =

k∗, and let a∗ and a∗ denote the largest elements in the supports of the binary

representations of m∗ and m∗, respectively. Then a∗ = `∗− 1 and a∗ = `∗, and so

a∗− a∗ = r− 1. Hence by the induction hypothesis, we have n[2a∗+1] < m∗. Since

m∗ = k∗ and a∗ = `∗ − 1, this implies that

n[2`∗ ] < k∗. (7.2.1)

Now by definition, we have

M =

{
2`∗ , 2`∗ + 2`∗−1, . . . ,

`∗∑

i=`∗−c

2i

}

for some integer c such that 0 ≤ c ≤ `∗. Hence 2`∗ ∈ M ⊆ K, and so by

Theorem 7.1.1(2) we obtain n[2`∗+1] < 2`∗ . But this implies that n[2`∗+1] = n[2`∗ ].

Putting this together with (7.2.1), we obtain

n[2`∗+1] < k∗,

as required.

(2) Suppose that K = K̂ and there exists a self-complementary K-hypergraph of

order n. Then n[2`∗+1] < k∗ by part (1).

Conversely, suppose that K = K̂, and let n be an integer such that n[2`∗+1] < k∗.

Then n = M2`∗+1+j for a positive integer M and an integer j ∈ {0, 1, . . . , k∗−1}.
We will show that there exists a self-complementary K-hypergraph of order n.
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It suffices to show that there exists a permutation in Sym(n) that is k-comple-

menting for all k ∈ K.

Let θ ∈ Sym(n) be a permutation whose disjoint cycle decomposition has M cy-

cles of length 2`∗+1 and j cycles of length 1 (j fixed points). Let k be an arbitrary

element of K and let b be the binary representation of k. Since K = K̂, it follows

that k ∈ N2. Let ` = max{i : i ∈ supp(b)}. By definition of `∗, we have ` ≤ `∗.

Moreover, by definition of k∗, we have j < k∗ ≤ k, and so j < k. Let A be the

set of fixed points of θ, and let B be the set of points in {1, 2, . . . , n} which lie in

a cycle of θ of length 2`∗+1. Then certainly A ∩ B = ∅ and A ∪ B = domain(θ).

Also, the sets A and B are both equal to unions of orbits of θ. Moreover, every

cycle of B has length 2`∗+1 and `∗ + 1 ≥ ` + 1 > `, and so θ satisfies condition

(II) of Theorem 2.2.5. Also, we have that |A| = j < k and every cycle of θ |A
has length 20. Hence if ` > 0, then θ satisfies condition (I) of Theorem 2.2.5. On

the other hand, if ` = 0, then k = 1, and so the fact that |A| < k implies that

|A| = 0, and hence θ satisfies condition (I) of Theorem 2.2.5 in this case also.

Thus Theorem 2.2.5 guarantees that θ is a k-complementing permutation. Since

k was arbitrary, we conclude that θ is a k-complementing permutation for every

k ∈ K. Hence there exists a self-complementary K-hypergraph of order n.



Chapter 8

Regular self-complementary

K-hypergraphs

8.1 Necessary conditions on order

In this section we determine necessary conditions on the order n of a t-subset-regular

self-complementary K-hypergraph for various subsets K of {1, 2, . . . , n− 1}.
Throughout this section, for a positive integer k, let bk denote the binary repre-

sentation of k.

Theorem 8.1.1 Let n ≥ 2 be an integer, let K ⊆ {1, 2, . . . , n − 1}, K 6= φ, and

let t be an integer such that 1 ≤ t < min{k : k ∈ K}. Suppose that there exists a

t-subset-regular self-complementary K-hypergraph with n vertices. Then the following

conditions hold:

(1) If K = {k} for some k ∈ {1, 2, . . . , n−1}, then there exists an integer ` ∈ supp(bk)

such that

n[2`+1] ∈ {t, t + 1, . . . , k[2`+1] − 1}.

(2) K 6= {1, 2, . . . , n− 1}.

97
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(3) If K contains a nonempty set

L = {2`, 2` + 1, 2`+1, 2`+1 + 1, . . . , 2`+r, 2`+r + 1} \ S

for some S ⊆ {2`, 2`+r + 1} and some integers `, r with ` ≥ 1 and r ≥ 0, then

n[2`+r+1] ∈ {t, t + 1, . . . , Lmin − 1},

where Lmin = min{k : k ∈ L}.

(4) Suppose that K contains a nonempty subset K̂ of consecutive elements in N2. Let

k∗ = max{k : k ∈ K̂} and let k∗ = min{k : k ∈ K̂}. Let b∗ and b∗ be the binary

representation of k∗ and k∗, respectively. Let `∗ and `∗ denote the largest elements

in supp(b∗) and supp(b∗), respectively. Then n[2`∗+1] ∈ {t, t + 1, . . . , k∗ − 1}.

Proof:

(1) If K = {k} for some k ∈ {1, 2, . . . , n− 1}, then X is a t-subset-regular self-com-

plementary k-hypergraph with n vertices, and so the result follows directly from

Theorem 3.1.4.

(2) Suppose, for the sake of contradiction, that K = {1, 2, . . . , n − 1}. Then the

subhypergraph Xk = (V,E ∩ V (k)) is a t-subset-regular self-complementary k-

uniform hypergraph for all k ∈ {1, . . . , n− 1}. But then X1 is a 1-subset-regular

1-hypergraph, which is impossible.

(3) Fix a positive integer `. We prove the result by induction on r.

If r = 0, then L = {2`, 2` + 1} \ S for some S ⊆ {2`, 2` + 1}. Since L 6= φ

by assumption, it follows that L must be a nonempty subset of {2`, 2` + 1}. If

|L| = 1, then Xk = (V,Ek) is a t-subset-regular self-complementary k-hyper-

graph for k = 2` or k = 2` + 1. Thus in this case the result follows directly

from Corollary 3.1.5. If |L| = 2, then L = {2`, 2` + 1}, and so Xk = (V, Ek) is a
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self-complementary t-subset-regular k-hypergraph for both k = 2` and k = 2` +1.

Hence Corollary 3.1.5 implies that

n[2`+1] ∈ {t, t + 1, . . . , 2` − 1} ∩ {t, t + 1, . . . , 2`}
= {t, t + 1, . . . , 2` − 1}
= {t, t + 1, . . . , Lmin − 1}.

Hence the result is true for r = 0.

Now suppose that r is a positive integer.

• Induction Hypothesis: If there exists a t-subset-regular self-complemen-

tary K̂-hypergraph, where K̂ contains a nonempty set

L̂ = {2`, 2` + 1, 2`+1, 2`+1 + 1, . . . , 2`+r−1, 2`+r−1 + 1} \ Ŝ

for some Ŝ ⊆ {2`, 2`+r−1 + 1}, then

n[2`+r] ∈ {t, t + 1, . . . , L̂min − 1},

where L̂min = min{k : k ∈ L̂}.

Suppose that K contains

L = {2`, 2` + 1, 2`+1, 2`+1 + 1, . . . , 2`+r, 2`+r + 1} \ S

for some S ⊆ {2`, 2`+r + 1}. Let

L̂ = {2`, 2` + 1, 2`+1, 2`+1 + 1, . . . , 2`+r−1 + 1} \ S.

Then the subhypergraph of X induced by the edges in ∪k∈L̂Ek is a t-subset-regular

self-complementary L̂-hypergraph, and so by the induction hypothesis,

n[2`+r] ∈ {t, t + 1, . . . , L̂min − 1} = {t, t + 1, . . . , Lmin − 1} (8.1.1)
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since L̂min = min{k : k ∈ L̂} = min{k : k ∈ L} = Lmin. Moreover, the subhy-

pergraph of X induced by the edges in ∪k∈L∗Ek is a t-subset-regular self-comple-

mentary L∗-hypergraph for L∗ = {2`+r} or L∗ = {2`+r, 2`+r + 1}. In either case,

Corollary 3.1.5 implies that

n[2`+r+1] ∈ {t, t + 1, . . . , 2`+r − 1}. (8.1.2)

Thus n satisfies both (8.1.1) and (8.1.2). Both of these conditions hold if and

only if

n[2`+r+1] ∈ {t, t + 1, . . . , Lmin − 1},

and thus the result is true for r. By the principle of mathematical induction, we

conclude that the result holds for all nonnegative integers r, for any fixed positive

integer `.

(4) Suppose that there exists a self-complementary K-hypergraph of order n. We

will show that n[2`∗+1] ∈ {t, t + 1, . . . , k∗ − 1} by induction on `∗ − `∗.

Base Step: If `∗ − `∗ = 0, then

K̂ =

{
`∗∑

i=c

2i,

`∗∑
i=c−1

2i, . . . ,

`∗∑

i=c−d

2i

}

for some nonnegative integers c, d such that 0 ≤ c − d ≤ c ≤ `∗. Now for

each k ∈ K̂, the t-subset-regular self-complementary subhypergraph Xk of X

induced by the edges with size k has order n, and hence Corollary 3.1.6 im-

plies that n[2`∗+1] ∈ {t, t + 1, . . . , k − 1} for all k ∈ K̂. Since k∗ ∈ K̂, we have

n[2`∗+1] ∈ {t, t + 1, . . . , k∗ − 1}, as required.

Induction Step: Let r be an integer, r ≥ 1.

• Induction Hypothesis: If K contains a nonempty subset M̂ of consecutive

elements in N2, m∗ = max{k : k ∈ M̂}, m∗ = min{k : k ∈ M̂}, a∗ and
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a∗ denote the largest elements in the supports of the binary representations

of m∗ and m∗, respectively, and a∗ − a∗ = r − 1, then n[2a∗+1] ∈ {t, t +

1, . . . , m∗ − 1}.

Now suppose that `∗ − `∗ = r. Let

M = {k ∈ K̂ : max{i : i ∈ supp(bk)} = `∗},

and let M̂ = K̂ \ M . Let m∗ = max{k : k ∈ M̂}, let m∗ = min{k : k ∈
M̂} = k∗, and let a∗ and a∗ denote the largest elements in the supports of

the binary representations of m∗ and m∗, respectively. Then a∗ = `∗ − 1 and

a∗ = `∗, and so a∗ − a∗ = r − 1. Hence by the induction hypothesis, we have

n[2a∗+1] ∈ {t, t + 1, . . . , m∗ − 1}. Since m∗ = k∗ and a∗ = `∗ − 1, this implies that

n[2`∗ ] ∈ {t, t + 1, . . . , k∗ − 1}. (8.1.3)

Now by definition, we have

M =

{
2`∗ , 2`∗ + 2`∗−1, . . . ,

`∗∑

i=`∗−c

2i

}

for some integer c such that 0 ≤ c ≤ `∗. Hence 2`∗ ∈ M ⊆ K. Since the

subhypergraph X2`∗ is t-subset-regular, Corollary 3.1.5 implies that n[2`∗+1] ∈
{t, t+1, . . . , 2`∗ − 1}. But this implies that n[2`∗+1] = n[2`∗ ]. Putting this together

with (8.1.3), we obtain

n[2`∗+1] ∈ {t, t + 1, . . . , k∗ − 1},

as required.
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8.2 Constructions

In this section, we construct some 1-subset-regular self-complementary K-hyper-

graphs, and prove that that necessary conditions established in Section 8.1 are suffi-

cient for certain sets K.

Construction 8.2.1 Let K be a set of positive integers such that kmin = min{k :

k ∈ K} ≥ 2. Let kmax = max{k : k ∈ K}, let b = (bm, bm−1, . . . , b1, b0) be the binary

representation of kmax, and let ` = max{i : bi = 1}. Let s ∈ {1, 2, . . . , kmin − 1}, let

m be a positive integer, let S = {∞1, . . . ,∞s} such that S ∩ Zm2`+1 = ∅, and let

V = S ∪ Zm2`+1 . For each k ∈ K, let Xk be a 1-subset-regular self-complementary

k-hypergraph on V with antimorphism

θ = (∞1)(∞2) · · · (∞s)
m−1∏
j=0

(j2`+1, j2`+1 + 1, . . . , (j + 1)2`+1 − 1)

given by Lemma 3.2.5 (for a = ` + 1).

Define X to be the K-hypergraph with vertex set V and edge set E = ∪k∈KE(Xk).

Lemma 8.2.2 The K-hypergraph X of Construction 8.2.1 is 1-subset-regular and

self-complementary.

Proof: The definition of ` guarantees that kmax[2`+1] = kmax. Hence for each k ∈ K

we have k[2`+1] = k, and thus 1 ≤ s < k[2`+1] = k. Also, since kmin ≥ 2, we have

kmax ≥ 2, and so we are guaranteed that ` + 1 ≥ 2. Hence the k-hypergraphs Xk

given by Lemma 3.2.5 exist for all k ∈ K. Now the subhypergraph of X induced

by the edges of rank k is Xk = (V,E(Xk)), which is 1-subset-regular, and so X is

1-subset-regular. Moreover, since each subhypergraph Xk is self-complementary and

θ ∈ ∩k∈KAnt(Xk), Proposition 6.1.1 implies that X is self-complementary.
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Construction 8.2.1 and Lemma 8.2.2 together imply the following sufficient con-

ditions on the order of a 1-subset-regular self-complementary K-hypergraph, for any

set of positive integers K.

Theorem 8.2.3 Let K be a set of positive integers such that kmin = min{k : k ∈
K} ≥ 2. Let kmax = max{k : k ∈ K}, let b be the binary representation of kmax, and

let ` be the largest element in supp(b). If n is an integer such that n ≥ kmax + 1 and

n[2`+1] ∈ {1, 2, . . . , kmin − 1}, then there exists a 1-subset-regular self-complementary

K-hypergraph of order n.

Theorem 8.2.3 implies that the necessary conditions on the order of a 1-subset-

regular self-complementary K-hypergraph given by Theorem 8.1.1(3) and (4) are

sufficient for certain sets K.

Theorem 8.2.4 Let K be a set of positive integers such that kmin = min{k : k ∈
K} ≥ 2. Let kmax = max{k : k ∈ K}, let b be the binary representation of kmax, and

let ` be the largest element in supp(b). If K satisfies one of the following conditions,

then there exists a 1-subset-regular self-complementary K-hypergraph of order n if

and only if n ≥ kmax + 1 and n[2`+1] ∈ {1, 2, . . . , kmin − 1}.

(1) K = {2i, 2i + 1, 2i+1, 2i+1 + 1, . . . , 2i+r, 2i+r + 1} \ S for some S ⊆ {2i, 2i+r + 1}
and some integers i, r with i ≥ 1 and r ≥ 0.

(2) K is a set of consecutive elements from N2.

(3) K is a set of consecutive positive integers such that kmin ∈ N2.

Proof: In all three cases, the sufficiency of the conditions on n follows from Theo-

rem 8.2.3. In cases (1) and (2), the necessity of the conditions on n follow from parts

(3) and (4) of Theorem 8.1.1, respectively.
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It remains to show that the condition n[2`+1] ∈ {1, 2, . . . , kmin− 1} is necessary in

case (3). Suppose that K is a set of consecutive positive integers such that kmin ∈ N2,

and there exists a 1-subset-regular self-complementary K-hypergraph of order n. The

set K contains a nonempty subset K̂ = K ∩ N2 of consecutive elements of N2. Let

k∗ = min{k : k ∈ K̂}, let k∗ = max{k : k ∈ K̂}, let b∗ be the binary representation of

k∗, and let `∗ denote the largest element in supp(b∗). Then Theorem 8.1.1(4) implies

that n[2`∗+1] ∈ {1, 2, . . . , k∗− 1}. Since the largest element in supp(b∗) must equal the

largest element of supp(b), we have `∗ = `. Moreover, since kmin ∈ N2, we also have

k∗ = kmin. Hence n[2`+1] ∈ {1, 2, . . . , kmin − 1}, as required.

In the next construction, we use Lemma 3.2.5 to find some sufficient conditions on

the order of a 1-subset-regular self-complementary K-hypergraph for any nonempty

set of positive integers K.

Construction 8.2.5 Let a ≥ 2 be an integer, let K be a set of positive integers, and

let k̂min = min{k[2a] : k ∈ K}. Let s ∈ {1, 2, . . . , k̂min−1}, let m be a positive integer,

let S = {∞1, . . . ,∞s} such that S ∩ Zm2`+1 = ∅, and let V = S ∪ Zm2`+1 . For each

k ∈ K, let Yk be the k-hypergraph on V given by Lemma 3.2.5.

Define Y to be the K-hypergraph with vertex set V and edge set E = ∪k∈KE(Yk).

Lemma 8.2.6 The K-hypergraph Y of Construction 8.2.5 is 1-subset-regular and

self-complementary.

Proof: First, since a ≥ 2 and 1 ≤ s < k[2a] for all k ∈ K, the hypergraphs Yk given

by Lemma 3.2.5 exist. Thus for each k ∈ K, the subhypergraph Yk = (V, E(Yk)) of Y

induced by the edges of rank k is 1-subset-regular and self-complementary. Moreover,

the permutation

θ = (∞1)(∞2) · · · (∞s)
m−1∏
j=0

(j2`+1, j2`+1 + 1, . . . , (j + 1)2`+1 − 1)
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is an antimorphism of Yk, for all k ∈ K, and so θ ∈ ∩k∈KAnt(Yk). It follows that Y

is 1-subset-regular and self-complementary.

Construction 8.2.5 and Lemma 8.2.6 together imply the following sufficient con-

ditions on the order of a 1-subset-regular self-complementary K-hypergraph, for any

nonempty set of positive integers K.

Theorem 8.2.7 Let a ≥ 2 be an integer, let K be a set of positive integers, let

k̂min = min{k[2a] : k ∈ K} and let kmax = max{k : k ∈ K}. If n ≥ kmax + 1 and

n[2a] ∈ {1, 2, . . . , k̂min − 1}, then there exists a 1-subset-regular self-complementary

K-hypergraph of order n.



Chapter 9

Transitive self-complementary

K-hypergraphs

9.1 Necessary conditions on order

In this section we will determine necessary conditions on the order n of t-fold-

transitive self-complementary K-hypergraphs for various subsets K of {1, 2, . . . , n}.
Let X = (V,E) be a K-hypergraph. Recall that, for each k ∈ K, the symbol

Xk denotes the subhypergraph of X induced by the edges of X of size k. Since

each permutation in Aut(X) maps edges of Xk onto edges of Xk, it follows that

θ ∈ Aut(X) if and only if θ ∈ Aut(Xk) for all k ∈ K. Thus Aut(X) = ∩k∈KAut(Xk),

which implies that Xk inherits the transitivity properties of X, for all k ∈ K. Hence

if X is t-fold-transitive, then Xk is t-fold-transitive for all k ∈ K.

Since t-fold-transitive k-hypergraphs are necessarily t-subset-regular, it follows

that t-fold-transitive K-hypergraphs are also t-subset-regular. Hence we can use

Theorem 8.1.1 to find basic necessary conditions on the orders of t-fold-transitive

self-complementary K-hypergraphs for certain subsets K of the set {1, 2, . . . , n− 1}.
However, the following result shows that the property of t-fold-transitivity implies

106
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even stronger necessary conditions on the order n of self-complementary K-hyper-

graphs than those given by Theorem 8.1.1(3) in the case where n ≡ t (mod 2`+r+1).

Theorem 9.1.1 Let K be a nonempty set of integers which contains a nonempty set

L of integers of the form 2` or 2` +1 for a positive integer `. Let Lmax = max{k : k ∈
L}, let m = min{i : 2i > Lmax}, and let n be an integer such that n ≡ t (mod 2m).

Suppose that there exists a t-fold-transitive self-complementary K-hypergraph X =

(V, E) of order n. Then

p(n−t+1)(p) ≡ 1 (mod 2m) for every prime p.

Proof: We know that Lmax = 2` or 2`+1 for some positive integer `. Then m = `+1.

Observe that the subhypergraph XLmax = (V,ELmax) is a t-fold-transitive self-comple-

mentary k-hypergraph of order n ≡ t (mod 2`+1) for k = 2` or k = 2` + 1. Thus

Theorem 4.1.3 implies that

p(n−t+1)(p) ≡ 1 (mod 2`+1) for every prime p.

Since m = ` + 1, this completes the proof.

9.2 Constructions

In this section, we present several constructions for vertex transitive self-complemen-

tary K-hypergraphs, and thus obtain some sufficient conditions on the order of these

structures, for various sets K of positive integers.

9.2.1 Paley K-hypergraphs

We begin with a construction for vertex transitive self-complementary K-hypergraphs

of prime power order, which is an extension of Construction 4.2.4 for the Paley k-
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uniform hypergraphs Pq,k,r.

Recall that for a prime power q, an element a ∈ F∗q, and an element b ∈ Fq, we

define the mapping αa,b : Fq → Fq by xαa,b = ax + b for all x ∈ Fq.

Construction 9.2.1 Paley K-hypergraph

Let K be a set of positive integers such that min{k : k ∈ K} ≥ 2. For each k ∈ K,

let

`k = max{k(2), (k − 1)(2)},

and let

` = max{`k : k ∈ K}.

Let q be a prime power such that q ≡ 1 (mod 2`+1), and let r be a divisor of the

integer (q − 1)/2`+1. Let Fq be the field of order q.

Define Pq,K,r to be the K-hypergraph with vertex set

V (Pq,K,r) = Fq

and edge set

E(Pq,K,r) =
⋃

k∈K

E(Pq,k,r),

in which Pq,k,r is the Paley k-uniform hypergraph of Construction 4.2.4.

Lemma 9.2.2 The Paley K-hypergraph Pq,K,r defined in Construction 9.2.1 is a ver-

tex transitive and self-complementary K-hypergraph.

Proof: Let k ∈ K. Since ` ≥ `k and q ≡ 1 (mod 2`+1), it follows that q ≡ 1 (mod

2`k+1). Also, since
q − 1

2`k+1
=

q − 1

2`k+1

2`−`k

2`−`k
=

q − 1

2`+1
2`−`k

and r divides (q − 1)/2`+1, it follows that r also divides (q − 1)/2`k+1. Hence the

Paley k-hypergraph Pq,k,r exists for each k ∈ K, and so Pq,K,r is a well-defined K-

hypergraph. Moreover, the subhypergraph Xk of X = Pq,K,r induced by the edges
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of size k is the (vertex transitive) self-complementary k-hypergraph Xk = Pq,k,r.

Hence condition (1) of Proposition 6.1.1 holds. Now if ω is a generator of Fq, then

Lemma 4.2.6(3) implies that αωr,0 ∈ Ant(Pq,k,r) = Ant(Xk) for all k ∈ K. Hence
⋂

k∈K Ant(Xk) 6= ∅, and so condition (2) of Proposition 6.1.1 also holds. Thus Pq,K,r

is a self-complementary K-hypergraph.

Lemma 4.2.6(2) implies that the group G = {α1,b : b ∈ Fn} ≤ Aut(Pq,k,r) for all

k ∈ K. Hence Aut(Pq,K,r) =
⋂

k∈K Aut(Pq,k,r) contains the subgroup G, which acts

transitively on Fq = V (Pq,K,r). Thus Pq,K,r is vertex transitive.

Construction 9.2.1 and Lemma 9.2.2 together imply the following result, which

gives some sufficient conditions on the order of a vertex transitive self-complementary

K-hypergraph.

Theorem 9.2.3 Let K be a set of positive integers such that min{k : k ∈ K} ≥ 2.

For each k ∈ K, let `k = max{k(2), (k − 1)(2)}. There exists a vertex transitive

self-complementary K-hypergraph of order n for every prime power n congruent to 1

modulo 2`+1, where ` = max{`k : k ∈ K}.

Note that Theorem 9.2.3 implies that the converse to Theorem 9.1.1 holds in the

cases where t = 1 and n is a prime power. The next construction for vertex transitive

self-complementary K-hypergraphs is an extension of Construction 4.2.8. It shows

that the converse of Theorem 9.1.1 holds for all n in the case where t = 1 and L = K.

Construction 9.2.4 Generalized Paley K-hypergraph

Let K be a set of positive integers such that min{k : k ∈ K} ≥ 2. For each k ∈ K,

let

`k = max{k(2), (k − 1)(2)},

and let

` = max{`k : k ∈ K}.
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Let n be a positive integer such that

pn(p) ≡ 1 (mod 2`+1) for every prime p.

Let n = pα1
1 pα2

2 · · · pαt
t be the unique prime factorization of n, where pi is prime, αi ≥ 1

and pi 6= pj for all i, j ∈ {1, 2, . . . , t} such that i 6= j. For each i ∈ {1, 2, . . . , t}, let

qi = pαi
i , let ri be a divisor of the integer (qi−1)/2`+1, and let r = (r1, r2, . . . , rt). Let

Fqi
denote the field of order qi. Define Xn,K,r to be the K-hypergraph with vertex set

V (Xn,K,r) = Fq1 × Fq2 × · · · × Fqt

and edge set

E(Xn,K,r) =
⋃

k∈K

E(Xn,k,r),

where for each k ∈ K, the symbol Xn,k,r denotes the k-uniform hypergraph of Con-

struction 4.2.8.

For i ∈ {1, 2, . . . , t}, an element a ∈ F∗qi
, and an element b ∈ Fqi

, the symbol

αi,a,b denotes the permutation αa,b ∈ Sym(Fqi
) defined on page 108.

Lemma 9.2.5 The K-hypergraph Xn,K,r defined in Construction 9.2.4 is a vertex

transitive and self-complementary K-hypergraph.

Proof: Let i ∈ {1, 2, . . . , t} and let k ∈ K. Since ` ≥ `k and qi ≡ 1 (mod 2`+1), it

follows that qi ≡ 1 (mod 2`k+1). Also, since

qi − 1

2`k+1
=

qi − 1

2`k+1

2`−`k

2`−`k
=

qi − 1

2`+1
2`−`k

and ri divides (qi − 1)/2`+1, it follows that ri also divides (qi − 1)/2`k+1. Hence the

k-hypergraph Xn,k,r exists for each k ∈ K, and so Xn,K,r is a well-defined K-hyper-

graph. Moreover, the subhypergraph Xn,k,r of Xn,K,r induced by the edges of size

k is a (vertex transitive) self-complementary k-hypergraph. Hence condition (1) of

Proposition 6.1.1 holds.
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For each i ∈ {1, 2, . . . , t}, let ωi be a generator of Fqi
. Then Lemma 4.2.6(2) and

(3) imply that αi,ω
ri
i ,0 ∈ Ant(Pqi,k,ri

) for all k ∈ K, and hence

α1,ω
r1
1 ,0 × α2,ω

r2
2 ,0 × · · · × αt,ω

rt
t ,0 ∈ Ant(Xn,k,r)

for all k ∈ K. Hence
⋂

k∈K Ant(Xn,k,r) 6= ∅, and so condition (2) of Proposition 6.1.1

also holds. Thus Xn,K,r is a self-complementary K-hypergraph.

By Lemma 4.2.6(2), the group Gi = {αi,1,b : b ∈ Fqi
} ≤ Aut(Pqi,k,ri

) for all k ∈ K.

Hence G = G1 × G2 × · · · × Gt ≤ Aut(Xn,k,r) for all k ∈ K. Thus Aut(Xn,K,r) =
⋂

k∈K Aut(Xn,k,r) contains the subgroup G, which acts transitively on

V (Xn,K,r) = Fq1 × Fq2 × · · · × Fqt .

Thus Xn,K,r is vertex transitive.

Construction 9.2.4 and Lemma 9.2.5 together imply the following result, which

gives some sufficient conditions on the order of a vertex transitive self-complementary

K-hypergraph.

Theorem 9.2.6 Let K be a set of positive integers such that min{k : k ∈ K} ≥ 2.

For each k ∈ K, let `k = max{k(2), (k − 1)(2)}, and let ` = max{`k : k ∈ K}.
There exists a vertex transitive self-complementary K-hypergraph of order n for every

positive integer n such that

pn(p) ≡ 1 (mod 2`+1) for every prime p.

Note that Theorem 9.2.6 implies that the converse to Theorem 9.1.1 holds in the

case where L = K.
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9.2.2 A rank-increasing construction

We begin by introducing a rank-increasing construction due to Potočnik and Šajna

[24] which takes a k-hypergraph as input, and returns a k∗-hypergraph for any k∗ ≥ k.

Lemma 9.2.8 shows that if
(

k∗
k

)
is odd, this construction preserves the properties of

vertex-transitivity and self-complementarity. The proof of Lemma 9.2.8 is included

for the sake of completeness.

Construction 9.2.7 [24]

Let X = (V,E) be a k-hypergraph and let k∗ be an integer such that k∗ ≥ k. Define

X∗ to be the k∗-hypergraph with vertex set V ∗ = V and edge set

E∗ = {e ∈ V (k∗) : e contains an even number of elements of E as subsets}.

Lemma 9.2.8 [24] Let X = (V, E) be a k-hypergraph, let k∗ be an integer such that

k∗ ≥ k and
(

k∗
k

)
is odd, and let X∗ be the k∗-hypergraph defined in Construction 9.2.7.

1. If X is self-complementary, then so is X∗.

2. If X is vertex transitive, then so is X∗, and if X is doubly transitive, then so

is X∗.

Proof: Let e ∈ V (k∗). By definition, we have e ∈ E∗ if and only if e contains an even

number of elements of E as subsets. Since
(

k∗
k

)
is odd, this is equivalent to saying

that e contains an odd number of elements of V (k) \ E. Hence e 6∈ E∗ if and only if

e contains an even number of elements of V (k) \ E. This implies that any antimor-

phism of X is also an antimorphism of X∗, and any automorphism of X is also an

automorphism of X∗. Hence if X is self-complementary, then so is X∗. Moreover,

the transitivity properties of X are inherited by X∗. Thus if X is vertex-transitive,

then so is X∗, and if X is doubly-transitive, then so is X∗.
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For a nonempty set K of positive integers, we can use Construction 9.2.7 to

construct a K-hypergraph from a uniform hypergraph whose rank is the smallest

integer in K.

Construction 9.2.9 Let K be a set of positive integers such that kmin = min{k :

k ∈ K} ≥ 2, and let X = (V,E) be a kmin-hypergraph. For each k ∈ K such that

k > kmin, use Construction 9.2.7 to construct the k-hypergraph X∗
k = (V ∗, E∗

k) with

vertex set V ∗ = V and edge set

E∗
k = {e ∈ V (k) : e contains an even number of elements of E as subsets}.

Now define X∗ = (V ∗, E∗) to be the K-hypergraph with vertex set V ∗ = V and edge

set E∗ =
⋃

k∈K E∗
k .

Lemma 9.2.10 Let K be a set of positive integers such that kmin = min{k : k ∈
K} ≥ 2, and let X = (V,E) be a kmin-hypergraph. Let X∗ be the K-hypergraph

defined in Construction 9.2.9. Suppose that
(

k
kmin

)
is odd for all k ∈ K. Then the

following hold.

1. If X is self-complementary, then so is X∗.

2. If X is vertex transitive, then so is X∗, and if X is doubly transitive, then so

is X∗.

Proof: Let k ∈ K. Since k ≥ kmin and
(

k
kmin

)
is odd by assumption, the proof of

Lemma 9.2.8 shows that Aut(X) ≤ Aut(X∗
k) and Ant(X) ≤ Ant(X∗

k). Since k was

arbitrary, we conclude that

Ant(X) ≤
⋂

k∈K

Ant(X∗
k) = Ant(X∗)

and

Aut(X) ≤
⋂

k∈K

Aut(X∗
k) = Aut(X∗).
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Hence if X is self-complementary, then so is X∗, and the transitivity properties of X

are inherited by X∗. Thus if X is vertex transitive, then so is X∗, and if X is doubly

transitive, then so is X∗.

Construction 9.2.9 can be used to generate many vertex transitive self-comple-

mentary K-hypergraphs for various sets of positive integers K from the vertex transi-

tive self-complementary graphs and 3-hypergraphs which were constructed in Chap-

ter 4. We obtain the following sufficient conditions on the orders of vertex transitive

self-complementary K-hypergraphs.

Recall that a Muzychuk integer is a positive integer n such that pn(p) is congruent

to 1 modulo 4 for all primes p.

Theorem 9.2.11 Let K be a set of positive integers. Let n be a Muzychuk integer,

and let q be a prime power congruent to 1 modulo 4.

(1) If k ≡ 2 or 3 (mod 4) for all k ∈ K, then there exists a vertex transitive self-

complementary K-hypergraph of order n.

(2) If k ≡ 3 ( mod 4) for all k ∈ K, then there exist vertex transitive self-complemen-

tary K-hypergraphs of orders 2n and (1+q)n, and there exists a doubly transitive

self-complementary K-hypergraph of order 1 + q.

Proof:

(1) Let n be a Muzychuk integer, and let K be a set of positive integers such that

k ≡ 2 or 3(mod 4) for all k ∈ K. Let K̂ = K ∪ {2}. Then k̂min = min{k : k ∈
K̂} = 2. By Theorem 4.2.2(1), there exists a vertex transitive self-complementary

graph (a 2-hypergraph) Xn
2 = (V,E) of order n. Let Xn

K̂
be the K̂-hypergraph of

Construction 9.2.9 obtained using the base graph X. Since k ≡ 2 or 3 (mod 4),
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we have k = 4t + 2 or k = 4t + 3 for some nonnegative integer t, and so

(
k

2

)
=

(4t + 2)(4t + 1)

2
= (2t + 1)(4t + 1),

or

(
k

2

)
=

(4t + 3)(4t + 2)

2
= (4t + 3)(2t + 1).

Hence in either case
(

k
2

)
is odd. Thus

(
k
2

)
is odd for all k ∈ K̂, and so Lemma 9.2.10

implies that Xn
K̂

is a vertex transitive self-complementary K̂-hypergraph of order

n. Since K ⊆ K̂, the K-subhypergraph of Xn
K̂

induced by the edges with ranks

in K is a vertex transitive self-complementary K-hypergraph of order n.

(2) Suppose that K is a set of positive integers such that k ≡ 3 (mod 4) for all

k ∈ K, let n be a Muzychuk integer, and let q be a prime power congruent to 1

modulo 4. Let K̂ = K ∪ {3}.

By Theorem 4.2.3(2), there exists a vertex transitive self-complementary 3-hy-

pergraph X2n
3 of order 2n, a vertex transitive self-complementary 3-hypergraph

X
(1+q)n
3 of order (1 + q)n, and a doubly transitive self-complementary 3-hyper-

graph X1+q
3 of order 1 + q. Let X2n

K̂
be the K̂-hypergraph of Construction 9.2.9

obtained using base graph X2n
3 , let X

(1+q)n

K̂
be the K̂-hypergraph of Construc-

tion 9.2.9 obtained using base graph X
(1+q)n
3 , and let X1+q

K̂
be the K̂-hypergraph

of Construction 9.2.9 obtained using base graph X1+q
3 .

Since k ≡ 3 (mod 4), we have k = 4t + 3 for some nonnegative integer t. Thus

(
k

3

)
=

(4t + 3)(4t + 2)(4t + 1)

3!
=

(4t + 3)(2t + 1)(4t + 1)

3
,

which is odd. It follows that
(

k
3

)
is odd for all k ∈ K̂. Thus Lemma 9.2.10 implies

that X2n
K̂

and X
(1+q)n

K̂
are vertex transitive self-complementary K̂-hypergraphs of

order 2n and (1+q)n, respectively, and that X1+q

K̂
is a doubly transitive self-com-

plementary K̂-hypergraph of order 1 + q. Since K ⊆ K̂, the K-subhypergraphs
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of X2n
K̂

and X
(1+q)n

K̂
induced by the edges with sizes in K are vertex transitive

self-complementary K-hypergraphs of order 2n and (1 + q)n, respectively, and

the K-subhypergraph of X1+q

K̂
induced by the edges with sizes in K is a doubly

transitive self-complementary K-hypergraph of order 1 + q.



Appendix A

In Lemma A.0.13, we will show directly that the necessary and sufficient condition

(2.3.1) of Corollary 2.3.2 on the order n of a self-complementary k-hypergraph is

equivalent to Szymański and Wojda’s condition that
(

n
k

)
is even. First we will need

a preliminary lemma.

Recall the definitions of the symbols n[m] and
[

n
m

]
from page 5 of Section 1.1.

Lemma A.0.12 Let m,n, d be positive integers, where m ≥ n. Then

[m

d

]
−

[n

d

]
−

[
m− n

d

]
=





1 if m[d] < n[d]

0 otherwise

.

Proof: By the division algorithm, we have

m =
[m

d

]
d + m[d] and n =

[n

d

]
d + n[d],

where 0 ≤ m[d] < d and 0 ≤ n[d] < d. Hence

m− n =
([m

d

]
−

[n

d

])
d +

(
m[d] − n[d]

)
, (A.0.1)

and −d < m[d] − n[d] < d.

If m[d] ≥ n[d], then 0 ≤ m[d] − n[d] < d and so (A.0.1) shows that (m − n)[d] =

m[d] − n[d] and
[

m−n
d

]
=

[
m
d

]− [
n
d

]
, which implies that

[m

d

]
−

[n

d

]
−

[
m− n

d

]
= 0.

117
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On the other hand, if m[d] < n[d], then we can rewrite (A.0.1) as

m− n =
([m

d

]
−

[n

d

]
− 1

)
d +

(
d + m[d] − n[d]

)
,

where 0 < d + m[d] − n[d] < d, which shows that (m − n)[d] = d + m[d] − n[d] and
[

m−n
d

]
=

[
m
d

]− [
n
d

]− 1. This implies that

[m

d

]
−

[n

d

]
−

[
m− n

d

]
= 1.

Recall the definition of the symbol n(p) from page 5 of Section 1.1. It is well

known that for any positive integer m and prime number p, we have

m!(p) =
∑
r≥1

[
m

pr

]
.

It follows that
(

m

n

)

(p)

=

(
m!

n!(m− n)!

)

(p)

= m!(p) − n!(p) − (m− n)!(p)

=
∑
r≥1

{[
m

pr

]
−

[
n

pr

]
−

[
m− n

pr

]}
. (A.0.2)

We can evaluate each term in the sum above using the fact that

[
m

pr

]
−

[
n

pr

]
−

[
m− n

pr

]
=





1 if m[pr] < n[pr]

0 otherwise

, (A.0.3)

which follows directly from Lemma A.0.12.

Lemma A.0.13

Let k and n be positive integers, k ≤ n, and let b be the binary representation of k.

Then
(

n
k

)
is even if and only if

n[2`+1] < k[2`+1] for some ` ∈ supp(b). (A.0.4)
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Proof: Observe that
(

n
k

)
is even if and only if

(
n
k

)
(2)
≥ 1. By (A.0.2) we have

(
n

k

)

(2)

=
∑
r≥1

{[ n

2r

]
−

[
k

2r

]
−

[
n− k

2r

]}
. (A.0.5)

By (A.0.3), for each r ≥ 1 we have

[ n

2r

]
−

[
k

2r

]
−

[
n− k

2r

]
=





1 if n[2r] < k[2r]

0 otherwise

.

Hence (A.0.5) implies that
(

n
k

)
is even if and only if

n[2r] < k[2r] for some r ≥ 1,

that is, if and only if

n[2`+1] < k[2`+1] for some ` ≥ 0. (A.0.6)

Now we will show that the condition in (A.0.6) holds for some ` ≥ 0 if and only

if it holds for some ` ∈ supp(b). If (A.0.6) holds for some ` ∈ supp(b), then (A.0.6)

certainly holds for some ` ≥ 0. Conversely, assume for the sake of contradiction that

the condition in (A.0.6) does not hold for any ` ∈ supp(b), but it holds for some ` 6∈
supp(b). Now if i 6∈ supp(b) for all i such that 0 ≤ i ≤ `, then k[2`+1] =

∑`
i=0 bi2

i = 0,

and so (A.0.6) implies that n[2`+1] < 0, giving a contradiction. Hence there must exist

a nonnegative integer i < ` such that i ∈ supp(b). Let `∗ denote the largest such

integer i. Then k[2`+1] =
∑`∗

i=0 bi2
i = k[2`∗+1], and so (A.0.6) implies that

n[2`+1] < k[2`∗+1]. (A.0.7)

Since `∗ < `, we have n[2`∗+1] ≤ n[2`+1], and so (A.0.7) implies that

n[2`∗+1] < k[2`∗+1].

Hence `∗ ∈ supp(b) and (A.0.6) holds for `∗, contradicting our assumption. We con-

clude that (A.0.6) holds if and only if n[2`+1] < k[2`+1] for some ` ∈ supp(b), and thus
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(
n
k

)
is even if and only if (A.0.4) holds.

The following technical lemma is used in the proof of Theorem 2.2.5 in Sec-

tion 2.2.2. It is also used to verify the validity of Algorithm 2.4.2 in Section 2.4.

Lemma A.0.14 Let ` and n be positive integers such that n ≥ 2. If there exists a

sequence of nonnegative integers a0, a1, . . . , a`−1 such that
∑`−1

i=0 ain
i ≥ n`, then there

exists a sequence of integers c0, c1, . . . , c`−1 such that 0 ≤ ci ≤ ai for i = 0, 1, . . . , `−1,

and
∑`−1

i=0 cin
i = n`.

Proof: The proof is by induction on `.

Base Step: The statement is certainly true if ` = 1, for if there is a nonnegative

integer a0 such that a0n
0 ≥ n1 = n, then a0 ≥ n, and so the result holds with c0 = n.

Induction Step: Let ` ≥ 2 and assume that the statement is true for `−1. That

is, assume that if there is a sequence of non-negative integers â0, . . . , â`−2 such that
∑`−2

i=0 âin
i ≥ n`−1, then there exists a sequence of integers ĉ0, . . . , ĉ`−2 with 0 ≤ ĉi ≤ âi,

for i = 0, 1, . . . , `− 2, such that
∑`−2

i=0 ĉin
i = n`−1.

Now suppose that a0, . . . , a`−1 is a sequence of nonnegative integers such that
∑`−1

i=0 ain
i ≥ n`. If a`−1 ≥ n, then to obtain the desired sequence, set ci = 0 for all

i ∈ {0, 1, . . . , `− 2}, and set c`−1 = n. Then 0 ≤ ci ≤ ai for all i, and
∑`−1

i=0 cin
i = n`,

as required.

Hence we may assume that a`−1 ≤ n − 1. Then a`−1 = n − k for an integer k

such that 1 ≤ k ≤ n. In this case a0, a1, . . . , a`−2 is a sequence such that

`−2∑
i=0

ain
i ≥ n` − (n− k)n`−1 = kn`−1 ≥ n`−1.

Hence by the induction hypothesis, there exists a sequence {c1
i } such that 0 ≤
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∑k
j=0 c1

i ≤ ai for all i ∈ {0, 1, . . . , `− 2}, and
∑`−2

i=0 c1
i n

i = n`−1. Now

`−2∑
i=0

(ai − c1
i )n

i ≥ n` − (n− k + 1)n`−1 = (k − 1)n`−1 ≥ n`−1

for k > 1. Thus for k > 1 we can continue in this way, applying the induction

hypothesis k times to obtain k sequences of integers {c1
i }, {c2

i }, . . . , {ck
i } such that 0 ≤

∑k
j=0 cj

i ≤ ai for all i ∈ {0, 1, . . . , `−2}, and
∑`−2

i=0 cj
in

i = n`−1 for all j ∈ {1, 2, . . . , k}.
Now to obtain the desired sequence, set ci =

∑k
j=1 cj

i for all i ∈ {0, 1, . . . , `− 2}, and

set c`−1 = a`−1 = n− k. Then certainly 0 ≤ ci ≤ ai for i = 0, 1, . . . , `− 1. Moreover,

`−1∑
i=0

cin
i =

`−2∑
i=0

cin
i + c`−1n

`−1

=
`−2∑
i=0

[
k∑

j=1

cj
i

]
ni + (n− k)n`−1

=
k∑

j=1

[
`−2∑
i=0

cj
in

i

]
+ (n− k)n`−1

=
k∑

j=1

n`−1 + (n− k)n`−1

= kn`−1 + (n− k)n`−1 = n`,

as required. The result follows by induction.

The next two technical lemmas are used in the proof of Lemma 3.2.3 in Sec-

tion 3.2.2.

Lemma A.0.15 Let α, i, and j be integers such that 0 ≤ i, j ≤ 2α, i + j is odd,

and 1
2α

(
2α

i

)(
2α

j

)
is an integer. Then 1

2α

(
2α

i

)(
2α

j

)
is odd if and only if i ∈ {0, 2α} or

j ∈ {0, 2α}.

Proof: Since i + j is odd, either i or j must be odd. First suppose that i is odd.
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Now
1

2α

(
2α

i

)(
2α

j

)
=

1

2α − i

(
2α − 1

i

)(
2α

j

)
.

Since i ≤ 2α and i is odd, any integer r in the support of the binary representation of

i satisfies r ≤ α− 1. Since (2α− 1)[2r+1] ≥ i[2r+1] for all such r, Lemma A.0.13 implies

that
(
2α−1

i

)
is odd. Now if j 6∈ {0, 2α}, then (2α)[2r+1] = 0 < j[2r+1] for some r in the

support of the binary representation of j, and so Lemma A.0.13 implies that
(
2α

j

)
is

even. Since 2α − i is odd, this implies that the integer 1
2α

(
2α

i

)(
2α

j

)
= 1

2α−i

(
2α−1

i

)(
2α

j

)

is even. On the other hand, if j ∈ {0, 2α}, then
(
2α

j

)
= 1, and so 1

2α

(
2α

i

)(
2α

j

)
=

1
2α−i

(
2α−1

i

)(
2α

j

)
= 1

2α−i

(
2α−1

i

)
is an odd integer. Thus if i is odd, then 1

2α

(
2α

i

)(
2α

j

)
is

odd if and only if j ∈ {0, 2α}.
By a symmetric argument, if j is odd, then 1

2α

(
2α

i

)(
2α

j

)
is odd if and only if

i ∈ {0, 2α}.

Lemma A.0.16 Let r be a nonnegative integer. Suppose that λ1, λ2, . . . , λn is a

sequence of integers such that 0 ≤ λi ≤ r for all i ∈ {1, 2, . . . , n}. Then there is a

function v : {λ1, λ2, . . . , λn} → {−1, 1} such that 0 ≤ ∑n
i=1 λiv(λi) ≤ r.

Proof: The proof is by induction on n. If n = 1, then take v(λ1) = 1. If n = 2,

then if λ1 ≤ λ2, take v(λ1) = −1 and v(λ2) = 1, and if λ1 ≥ λ2, take v(λ1) = 1 and

v(λ2) = −1. Hence the result holds when n ∈ {1, 2}.
Let n > 2 and suppose the result holds for all such sequences of length n−1. Let

λ1, λ2, . . . , λn be a sequence of integers such that 0 ≤ λi ≤ r for all i ∈ {1, 2, . . . , n}.
By the induction hypothesis, there is a function v′ : {λ1, . . . , λn−1} → {−1, 1} such

that
∑n−1

i=1 λiv
′(λi) = λ for some λ such that 0 ≤ λ ≤ r. By the base case n = 2,

there is a function v̂ : {λ, λn} → {−1, 1} such that 0 ≤ λv̂(λ) + λnv̂(λn) ≤ r.

Let v be the function v : {λ1, . . . , λn} → {−1, 1} such that v(λi) = v̂(λ)v′(λi) for

i ∈ {1, 2, . . . , n − 1}, and v(λn) = v̂(λn). Then
∑n

i=1 λiv(λi) = λv̂(λ) + λnv̂(λn) and
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so 0 ≤ ∑n
i=1 λiv(λi) ≤ r as required. The result follows by induction.



Bibliography

[1] S. Ajoodani-Namini, All block designs with b =
(

v
k

)
/2 exist, Discrete Math. 179

(1998), 27-35.

[2] S. Ajoodani-Namini and G.B. Khosrovshahi, More on halving the complete de-

sign, Discrete Math. 135 (1994), 29-37.

[3] S. Ajoodani-Namini and G.B. Khosrovshahi, Combining t-designs, J. Combin.

Theory, Ser. A 58 (1991), 26-34.

[4] W.O. Alltop, Extending t-designs, J. Combin. Theory, Ser. A 18 (1975), 177-

186.

[5] Z. Baranyai, On the factorizations of complete uniform hypergraphs, Finite and

Infinite Sets, Colloq. Math. Soc. Janos Bolyai 10 (1975), 91-108, North Holland,

Amsterdam.

[6] C.J. Colbourn and J.H. Dinitz (editors), Handbook of Combinatorial Designs,

Chapman and Hall/CRC Press, Boca Raton, Florida, 2007.

[7] M.J. Colbourn and C.J. Colbourn, Graph isomorphism and self-complementary

graphs, SIGACT News 10 (1) (1978), 25-29.

[8] M. Dehon, On the existence of 2-designs Sλ(2, 3, v) without repeated blocks,

Discrete Math. 43 (1983), 155-171.

124



BIBLIOGRAPHY 125

[9] E. Dobson, On groups of prime power degree that contain a full cycle, Discrete

Math. 299 (2005), 65-78. 43 (1983), 155-171.

[10] A. Farrugia, Self-complementary graphs and generalizations: a comprehensive

reference manual. Master’s Thesis, University of Malta, 1999.

[11] M. Hall Jr., The Theory of Groups. Macmillan, New York, 1959.

[12] A. Hartman, Halving the complete design, Ann. Discrete Math. 34 (1987), 207-

224.

[13] C. A. R. Hoare, Algorithm 63, Partition; Algorithm 64, Quicksort; Algorithm

65: FIND, Comm. of the ACM, 4 (1961), 321-322.

[14] C. A. R. Hoare, Quicksort, Comp. J. 5(1) (1962), 10-15.

[15] K. R. James and W. Riha , Algorithm 29: efficient algorithms for doubly and

multiply restricted partitions, Computing 16 (1976), 163-168.

[16] G.B. Khosrovshahi and S. Ajoodani-Namini, A new basis for trades, SIAM J.

Discrete Math. 3 (1990), 364-372.

[17] G.B. Khosrovshahi and B. Tayfeh-Rezaie, Root cases of large sets of t-designs,

Discrete Math. 263 (2003), 143-155.
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[28] G. Ringel, Selbstkomplementäre Graphen, Arch. Math. (Basel) 14 (1963), 354-

358.
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