
The metric dimension of circulant graphs and

their Cartesian products

Kevin Chau

kevincchau@hotmail.com

Shonda Gosselin ∗

s.gosselin@uwinnipeg.ca

Department of Mathematics and Statistics, University of Winnipeg

515 Portage Avenue, Winnipeg, Manitoba, R3B 2E9, CANADA,

February 8, 2017

Abstract

Let G = (V,E) be a connected graph (or hypergraph) and let d(x, y)
denote the distance between vertices x, y ∈ V (G). A subset W ⊆ V (G) is
called a resolving set for G if for every pair of distinct vertices x, y ∈ V (G),
there is w ∈ W such that d(x,w) 6= d(y,w). The minimum cardinality
of a resolving set for G is called the metric dimension of G, denoted by
β(G). The circulant graph Cn(1, 2, . . . , t) has vertex set {v0, v1, . . . , vn−1}
and edges vivi+j where 0 ≤ i ≤ n − 1 and 1 ≤ j ≤ t and the indices are
taken modulo n (2 ≤ t ≤

⌊

n

2

⌋

).
In this paper we determine the exact metric dimension of the circu-

lant graphs Cn(1, 2, . . . , t), extending previous results due to Borchert and
Gosselin (2013), Grigorious et al (2014), and Vetŕık (2016). In particular,
we show that β(Cn(1, 2, . . . , t)) = β(Cn+2t(1, 2, . . . , t)) for large enough n,
which implies that the metric dimension of these circulants is completely
determined by the congruence class of n modulo 2t. We determine the
exact value of β(Cn(1, 2, . . . , t)) for n ≡ 2 mod 2t and n ≡ (t+ 1) mod 2t
and we give better bounds on the metric dimension of these circulants
for n ≡ 0 mod 2t and n ≡ 1 mod 2t. In addition, we bound the metric
dimension of Cartesian products of circulant graphs.
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1 Introduction

1.1 Definitions

A vertex x in a graph G is said to resolve a pair u, v of vertices of G if the
distance from u to x does not equal the distance from v to x. A set W of
vertices of G is a resolving set for G if every pair of vertices of G is resolved by
some vertex of W . The smallest cardinality of a resolving set for G is called the
metric dimension of G, and is denoted by β(G).

For positive integers t and n, the circulant graph Cn(1, 2, . . . , t) is the simple
graph with vertex set Zn = {v0, v1, . . . , vn−1}, the integers modulo n, in which
vertex vi is adjacent to the vertices vi−t, vi−t+1, . . . , vi−1, vi+1, . . . , vi+t−1, vi+t

(mod n) in Cn(1, 2, . . . , t). Observe that the distance between two vertices vi
and vj in G = Cn(1, 2, . . . , t) is given by

dG(vi, vj) =







⌈

|i−j|
t

⌉

, |i − j| < ⌈n
2 ⌉

⌈

n−|i−j|
t

⌉

, |i − j| ≥ ⌈n
2 ⌉

The outer cycle of the circulant graph G = Cn(1, 2, . . . , t) is a spanning
subgraph of G in which the vertex vi is adjacent to exactly the vertices vi+1

and vi−1.
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Figure 1: C13(1, 2)

The Cartesian product of graphsG1 and G2, denoted by G1�G2, is the graph
with vertex set V (G1) × V (G2) := {(x, y) : x ∈ V (G1), y ∈ V (G2)}, in which
(x, y) is adjacent to (x′, y′) whenever x = x′ and yy′ ∈ E(G2), or y = y′ and
xx′ ∈ E(G1). Observe that if G1 and G2 are connected graphs, then G1�G2 is
connected. Assuming that isomorphic graphs are equal, the Cartesian product
is associative, so G1�G2� · · ·�Gd is well-defined for graphs G1, G2, . . . , Gd.
Moreover, for two vertices ~x = (x1, x2, . . . , xd) and ~y = (y1, y2, . . . , yd) of the

graph G = G1�G2� · · ·�Gd, the distance dG(~x, ~y) =
∑d

i=1 dGi
(xi, yi).
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1.2 History and layout of the paper

The concept of the metric dimension of a graph was first introduced by Slater
[13, 14], and independently by Harary and Melter [7]. Their introduction of
this invariant was motivated by its application to the placement of a minimum
number of sonar/loran detecting devices in a network so that the position of
every vertex in the network can be uniquely described in terms of its distances
to the devices in the set. Khuller et al [10] later studied the metric dimension
as an application to the navigation of robots in a graph space, and showed
that the problem of determining the metric dimension of a given graph is NP-
hard, and they determined the metric dimension of trees. An alternate proof
of the formula for the metric dimension of trees was given by Chartrand et al
in [5], and they characterized the graphs of order n with metric dimension 1
(paths), n−1 (complete graphs) and n−2. Their study of the metric dimension
was motivated by its applications to a problem in pharmaceutical chemistry.
The metric dimension of a graph is related to several other well studied graph
invariants such as the determining number (the base size of its automorphism
group), and a good survey of these invariants and their relation to one another
was written by Bailey and Cameron in 2011 [1].

Due to the fact that metric dimension has applications in network discovery
and verification, combinatorial optimization, chemistry, and many other areas,
researchers focus on computing or bounding the metric dimension of certain
classes of graphs. In particular, there is great interest in finding classes of
graphs whose metric dimension does not increase with the number of vertices.
Such classes of graphs are said to have bounded metric dimension. Circulant
graphs are an important class of graphs that can be used in the design of local
area networks. They have been used for decades in the design of computer and
telecommunication networks due to their optimal fault-tolerance and routing
capabilities. Javaid et al [9] initiated a study of the metric dimension of circu-
lants as some classes of these graphs had been shown to have bounded metric
dimension. Imran et al [8] later bounded the metric dimension of Cn(1, 2) and
Cn(1, 2, 3), and then Borchert and Gosselin [2] extended their results and de-
termined the exact metric dimension of these two families of circulants for all
n.

Proposition 1 [2]

(1) For n ≥ 6,

β(Cn(1, 2)) =

{

4 for n ≡ 1 mod 4

3 otherwise
.

(2) For n ≥ 8,

β(Cn(1, 2, 3)) =

{

5 for n ≡ 1 mod 6

4 otherwise
.

More recently, Grigorious et al [6] bounded the metric dimension of the
circulant graph Cn(1, 2, . . . , t) for all n and t, as stated in the following result.
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Proposition 2 Suppose n ≡ r mod 2t where 2 ≤ r ≤ 2t+ 1. Then

β(Cn(1, 2, . . . , t)) ≤

{

t+ 1, 2 ≤ r ≤ t+ 1

r − 1, t+ 2 ≤ r ≤ 2t+ 1
.

These bounds were obtained from resolving sets consisting of consecutive
vertices on the outer cycle of Cn(1, 2, . . . , t). Grigorious et al conjectured that
these upper bounds on β(Cn(1, 2, . . . , t)) were also lower bounds, but this was
refuted by Vetŕık in 2016 [15] when he found the following two infinite families
of counterexamples.

Proposition 3 [15]

(1) If n = 2tk + t where t ≥ 4 is even and k ≥ 2, then

β(Cn(1, 2, . . . , t)) ≤ t.

(2) If n = 2tk+ t+ p where t and p are even, t ≥ 4, 2 ≤ p ≤ t and k ≥ 1, then

β(Cn(1, 2, . . . , t)) ≤ t+
p

2
.

In addition, Vetŕık gave the following lower bounds on β(Cn(1, 2, . . . , t)).

Proposition 4 [15]

(1) If n ≥ t2 + 1 where t ≥ 2, then

β(Cn(1, 2, . . . , t)) ≥ t.

(2) If n = 2tk + r where t ≥ 2, and t+ 2 ≤ r ≤ 2t+ 1, then

β(Cn(1, 2, . . . , t)) ≥ t+ 1.

Propositions 3 and 4 together imply that if n ≡ t mod 2t, where n ≥ t2 + 1
and t ≥ 4 is even, then β(Cn(1, 2, . . . , t)) = t, and if n ≡ (t + 2) mod 2t where
t ≥ 2, then β(Cn(1, 2, . . . , t)) = t+1. In Section 2, we will extend Vetŕık’s results
and find the exact metric dimension of Cn(1, 2, . . . , t) in the cases where n is
congruent to 2 or (t+1) modulo 2t (See Theorem 1), and we give better bounds
on the metric dimension of these circulants for some other congruence classes
of n modulo 2t. We also show that for large enough n, β(Cn(1, 2, . . . , t)) =
β(Cn+2t(1, 2, . . . , t)), which implies that the metric dimension of these circulants
is completely determined by the congruence class of n modulo 2t (See Theorem
11).

Cáceres et al [4], and independently Peters-Fransen and Oellermann [11],
have studied the metric dimension of Cartesian products of graphs, and they
obtained the following result.
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Proposition 5 [4, 11] Let G be a graph and let n ≥ m ≥ 3. Then

β(G) ≤ β(G�Cm) ≤

{

β(G) + 1 if m is odd

β(G) + 2 if m is even
,

and

β(Cm�Cn) =

{

3, if m or n is odd

4, if m and n are both even
.

In Section 3 we will extend their result to find analogous bounds on the
metric dimension of G�Cn(1, 2, . . . , t) for a given graph G (Theorem 14), and
this will yield bounds on the metric dimension of Cartesian products of circulant
graphs (Corollary 10).

2 The metric dimension of circulant graphs

In this section we analyze the metric dimension of the circulant graph
Cn(1, 2, . . . , t). We use the concept of a resolving hypergraph, defined in [2], to
visualize the resolving set W of this graph.

Definition 1 For a graph G of diameter d and a set of vertices W ∈ G, we
define the resolving hypergraph of G with respect to W = {w1, w2, . . . , ws} as
the hypergraph with vertex set V (G), and for each i ∈ {1, 2, . . . , s} and j ∈
{0, 1, 2, . . . , d}, there is a hyperedge which contains all vertices at distance j

from wi in G. We denote this hypergraph by RW (G).

To represent the resolving hypergraph RW (G), a vertex v ∈ W is circled to
show that it is in the resolving set W , and separating lines are used to separate
the set of vertices at distance j from v, for each v ∈ W , for j ∈ {1, 2, . . . , d}.
The graph is resolved when every two distinct vertices in G are separated by a
line (Figure 2).

Figure 2: C19(1, 2, 3, 4) resolved by 4 vertices

Since the circulant Cn(1, 2, . . . , t) is vertex-transitive, we may assume that
v0 is one of the vertices in every resolving set, and throughout the paper we
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shall denote the set of vertices at distance j from v0 by Lj , for j ∈ {1, 2, . . . , d}.
Our figures are all orientated such that v0 is the topmost circled vertex and
the indices of the vertices ascend clockwise. Observe that each separating line
in the resolving hypergraph RW (G) partitions the level Lj into two subsets.
If two such separating lines partition Lj into two different pairs of subsets,
we say they are distinct separating lines in Lj . We denote the set of vertices
{vn−(j−1)t−1, vn−(j−1)t−2, . . . , vn−jt} on the left side of Lj by L−

j , and set of

vertices {v(j−1)t+1, v(j−1)t+2, . . . , vjt} on the right side of Lj by L+
j . Given a

vertex w in a resolving set W of G, the ends of the separating lines in Lj of the
resolving hypergraph R{v0,w}(G) draw between two of the t vertices in L+

j (L−
j )

with one cut, except for the line separating the vertices at distance d from w,
which might make two cuts between vertices in one L+

j (L−
j ) if the congruence

class of n modulo 2t is at most t − 1. If two cuts in Lj of R{v0,w}(G) draw
between two different pairs of vertices in the graph, we say they make distinct
cuts.

v0

L1

L2

L3

L4

L+
1L−

1

L+
2L−

2

L+
3

L−
3

Figure 3: R{v0}(C21(1, 2, 3))

It will be shown in this section that, for large enough n, the value of
β(Cn(1, 2, . . . , n)) is completely determined by the congruence class of n modulo
2t (see Corollary 9). It will be useful to consider n in the form n = 2tk + r

for 2 ≤ r ≤ 2t + 1, since for each value of r in this range, the diameter of
Cn(1, 2, . . . , t) is equal to k + 1. For each of these values of r, we either de-
termine the exact value of β(Cn(1, 2, . . . , t)), or we bound this value, and our
results are summarized in Section 4.

Remark 1 The diameter of any circulant graph G = Cn(1, 2, . . . , t) is ⌈n−1
2t ⌉.

Observe that if n = 2tk + r for 2 ≤ r ≤ 2t+ 1, then the diameter of G is equal
to k + 1.

We now prove a couple of technical lemmas which will be used throughout
the paper in the proofs of various bounds on β(Cn(1, 2, . . . , t)).
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Lemma 1 Three pairs of vertices (va, va+1), (va+2+x, va+3+x), and
(va+4+2x, va+5+2x) cannot be resolved by one vertex when t 6= x+ 2.

Proof: Label (va, va+1), (va+2+x, va+3+x), and (va+4+2x, va+5+2x) as P1, P2,
and P3 respectively. We may assume that for some vertex v ∈ V (G), we have
d(v, va) = d(v, va+1) + 1.

Case 1: Assume n ≡ (x + 3) mod 2t. Then the vertices in P1 and P2 can
only be simultaneously resolved with a vertex antipodal to these pairs. Figure 4
shows an example of three pairs of vertices where two of the pairs are resolved
in this way. Observe that d(v, va+4+2x) = d(v, va+5+2x).

Case 2: Assume n 6≡ (x + 3) mod 2t. Observe that only vertices greater
than t distance away from va on the outer cycle will have a unique represen-
tation with respect to v. Since P1 is resolved by v and t 6= x + 2, we have
d(v, va+2+x) = d(v, va+3+x) = d(v, va) + 1.

�

Figure 4: n ≡ 4 mod 8; The bottom pair is unresolved

Corollary 1 Two pairs of vertices (va, va+1) and (va+2+x, va+3+x) cannot be
resolved by one vertex when t 6= x+ 2 and n 6≡ (x+ 3) mod 2t.

Lemma 2 Let G = Cn(1, 2, . . . , t). No x consecutive vertices sharing the same
edge neighborhood in R{v0}(G) can be resolved by x− 2 vertices if n ≡ r mod 2t
where x ≤ r ≤ 2t+ 2 and 3 ≤ x ≤ t.

Proof: Consider a clique of x consecutive vertices on the outer cycle of G for
t ≥ 3. Without loss of generality, we can consider any x consecutive vertices
from the clique L+

1 = {v1, v2, . . . , vt} which all have distance 1 from v0. When
3 ≤ r ≤ x − 1, we can make at most two distinct cuts in Q of the resolving
hypergraph R{v0}(G) by taking vertices antipodal to the clique. Taking ⌈x

2 ⌉
vertices that each create two distinct cuts in Q of the resolving hypergraph
R{v0}(G) will resolve the clique because 2⌈x

2 ⌉ ≥ x. When x ≤ r ≤ 2t + 2, we
can make at most one distinct cut in Q of the resolving hypergraph R{v0}(G).
By the Pigeonhole Principle, taking at most x − 2 vertices to resolve the x

vertices in Q will leave at least one pair of vertices unresolved.

7



�

Corollary 2 Let G = Cn(1, 2, . . . , t). No x consecutive vertices sharing the
same edge neighborhood in R{v0}(G) can be resolved by ⌈x

2 ⌉ − 1 vertices.

In [15], Vetŕık showed that β(Cn(1, 2, . . . , t)) ≥ t+ 1 for n ≡ r mod t where
t + 2 ≤ r ≤ 2t + 1 (see Proposition 4 (2)) by showing that no t vertices of
the graph could resolve all pairs of vertices in Ld, the set of vertices at the
greatest distance from v0. We now give an alternate proof of Vetŕık’s result,
and show that t+ 1 is a lower bound on the metric dimension of this circulant
for n ≡ 2, t+ 1 mod 2t as well.

Theorem 1 Let G = Cn(1, 2, . . . , t) where n ≡ r mod 2t and t+1 ≤ r ≤ 2t+2,
then β(G) ≥ t+ 1.

Proof: Let W be a resolving set for G and take v0 ∈ W . Observe that for any
vertex v ∈ W where v 6= v0, at most two distinct cuts are made in the set L1

in the resolving hypergraph R{v,v0}(G) (Figure 5). This is because each of the
distinct cuts created by v are at least t vertices apart from each other. Taking
any t−1 additional vertices to be in W with v0 creates at most 2(t−1) = 2t−2
distinct cuts in L1. Since there are 2t vertices in L1, then by the Pigeonhole
Principle, there will be at least one pair of vertices in L1 left unresolved.

�

Figure 5: RW (C26(1, 2, 3, 4)); L1 has at least one unresolved pair

The next corollary follows from Proposition 2 and Theorem 1.

Corollary 3 Let G = Cn(1, 2, . . . , t) where n ≥ 2t+ 2. If n ≡ r mod 2t where
r = 2, t+ 1 or t+ 2, then β(G) = t+ 1.

Theorem 2 Let G = Cn(1, 2, . . . , t) where t is odd. If n ≡ (t+ 3) mod 2t then
β(G) ≤ t+ 1
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Proof: Let n = 2tk + (t + 3). Then diam(G) = k + 1. Let W1,W2,W3,W4 ⊆
V (G) where

W1 = {v0}
W2 = {v2, v4, . . . , vt−1}
W3 = {vn−2, vn−4, . . . , vn−(t−1)}
W4 = {vkt+1}

Note that |W1| = |W4| = 1 and |W2| = |W3| =
t−1
2 . Observe that W1∪W2∪W3

leaves only three pairs of unresolved vertices, listed below. (Figure 6 shows the
case for k = 3. For k ≥ 3, each of the layers L1, L2, . . . , Lk in Rv0(G) have the
same cut pattern as this example.)

{vn−1, v1}
{vn−kt−1, vn−kt−2}
{v(kt+1, vkt+2}

We have

d(vkt+1, vn−1) = d(vkt+1, v1) + 1
d(vkt+1, vn−kt−1) = d(vkt+1, vn−kt−2) + 1

So these pairs of vertices can all be resolved by taking vkt+1 as a resolving
vertex thus W1 ∪W2 ∪W3 ∪W4 resolves G.

�

Figure 6: RW1∪W2∪W3
(C38(1, 2, . . . , 5))

The next corollary follows from Theorems 1 and 2.

Corollary 4 Let G = Cn(1, 2, . . . , t) where t is odd. If n ≡ (t+3) mod 2t then
β(G) = t+ 1.

From the empirical evidence in the tables in the Appendix, it appears that
t+1 is also a lower bound on β(Cn(1, 2, . . . , t)) for n ≡ r mod 2t where 3 ≤ r ≤
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t−1 when n is large enough. We were able to prove this in the case where t = 4
and r = 3 for n ≥ 27, and where t = 5 and r = 3 for n ≥ 23, as the next two
theorems state.

Theorem 3 Let G = Cn(1, 2, 3, 4). If n ≡ 3 mod 8 and n ≥ 27 then β(G) ≥ 5

Proof: Let W be a resolving set for G and suppose to the contrary that
|W | ≤ 4 where v0 ∈ W . We consider the vertices on the v1 − v4(d−1)+1 path
of the outer cycle to be the right side of the graph and the vertices on the
vn−1 − vn−4(d−1)−1 path of the outer cycle to be the left side of the graph. In
order to resolve G, some vertex v ∈ W must create a separating line that parti-
tions the two vertices in Ld into separate sets. The only vertices that can do this
are {vn−1, vn−5, . . . , vn−4(d−1)−1} and {v1, v5, . . . , v4(d−1)+1} but by symmetry
we can consider only the former set as possible options for vertices in W .

Case 1: Say vn−1 ∈ W . Then

{v4(d−1)−1, v4(d−1)−2, v4(d−1)−3}
{vn−4(d−1)+2, vn−4(d−1)+1, vn−4(d−1)}

are two cliques of three unresolved vertices in Ld. We need to take vertices to be
in W such that at least one vertex in W makes three distinct cuts between the
vertices in the above cliques while the other vertex in W makes at least two dis-
tinct cuts between the vertices in the above cliques. So, the only way for these
cliques to be resolved is if vn−3 and v2 are in W but then r(vn−2|W ) = r(v1|W ).

Case 2: Say vn−5 ∈ W . Then

{vn−4(d−1)+2, vn−4(d−1)+1, vn−4(d−1)}
{v4(d−1), v4(d−1)−1, v4(d−1)−2}
{v4(d−2)−1, v4(d−2)−2, v4(d−2)−3}

are three cliques of three unresolved vertices. We need to take our remain-
ing vertices in W to be antipodal to some of the above cliques in order to obtain
the required number of distinct cuts for resolving them. Specifically, the only
way for these cliques to be resolved is if either one additional vertex from the
left side of L2 and one additional vertex from the right side of L1 are in W

or two additional vertices from the left side of L1 are in W . But there also
exists the clique of unresolved vertices {vn−1, vn−2, vn−3, vn−4} which can only
be resolved if at least one vertex in W is from the right side of Ld−1.

Case 3: Say we take any one vertex from {vn−9, vn−13, . . . , vn−4(d−1)−1} to
be in W . Then

{vn−1, vn−2, vn−3, vn−4}
{vn−5, vn−6, vn−7, vn−8}
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are two consecutive cliques of four that are unresolved. We need six distinct
cuts between the vertices in these cliques in order to resolve them. The only
way to make this many distinct cuts in these cliques is by taking two vertices
to be in W that each create three distinct cuts in the cliques. Observe that
since n ≡ 3 mod 8 and t = 4, only one additional vertex can make at most three
distinct cuts in the cliques and the final vertex that we choose can only make at
most two distinct cuts in the above cliques. Figure 7 shows an example of how
the final vertex we take can only make at most two distinct cuts in the above
cliques.

�

Figure 7: C27(1, 2, 3, 4)

Corollary 5 Let G = Cn(1, 2, 3, 4) where n = 8k + 3. Then

β(G) =

{

4 if k ∈ {1, 2}

5 if k ≥ 3
.

Proof: The value of β(G) when k ≥ 3 follows from Proposition 2 and Theorem
3. For k ∈ {1, 2}, observe that {v0, v2, v3, v10} resolves G when n = 11 and
{v0, v2, v7, v14} resolves G when n = 19.

�

Theorem 4 Let G = Cn(1, 2, . . . , 5). If n ≡ 3 mod 10 and n ≥ 23 then β(G) ≥
6.

Proof: Let W be a resolving set for G and suppose to the contrary that
|W | ≤ 5 where v0 ∈ W . We consider the vertices on the v1 − v5(d−1)+1 path
of the outer cycle to be the right side of the graph and the vertices on the
vn−1 − vn−5(d−1)−1 path of the outer cycle to be the left side of the graph. In
order to resolve G, some vertex v ∈ W must create a separating line that parti-
tions the two vertices in Ld into separate sets. The only vertices that can do this
are {vn−1, vn−6, . . . , vn−5(d−1)−1} and {v1, v6, . . . , v5(d−1)+1} but by symmetry
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we can consider only the former set as possible options for vertices in W .

Case 1: Say vn−1 ∈ W . Then

{v5(d−1)−1, v5(d−1)−2, v5(d−1)−3, v5(d−1)−4}
{vn−5(d−1)+3, vn−5(d−1)+2, vn−5(d−1)+1, vn−5(d−1)}

are two cliques of four unresolved vertices in Ld. In order to achieve the re-
quired six distinct cuts for resolving the above cliques, we need at least two
vertices that are both antipodal to one of the above cliques. Alternatively we
can use one vertex that is antipodal to one of the above cliques and use another
vertex that is antipodal to the other clique. Specifically, our options for resolv-
ing these cliques is by taking either vn−3 and vn−4 to be in W or v3 and vn−4

to be in W . In the former case, we only have one vertex left to take to be in W

after v0, vn−1, vn−3, vn−4 which is insufficient for simultaneously resolving the
two sets of unresolved vertices {v1, vn−2, vn−5} and {v7, v8}. In the latter case,
we only have one vertex left to take to be in W after v0, vn−1, v3, vn−4 which
is insufficient for resolving the set of unresolved vertices {v1, vn−2, vn−3} that is
a clique of three.

Case 2: Say vn−6 ∈ W . Then

{vn−5(d−1)+3, vn−5(d−1)+2, vn−5(d−1)+1, vn−5(d−1)}
{v5(d−1), v5(d−1)−1, v5(d−1)−2, v5(d−1)−3}
{v5(d−1)−1, v5(d−1)−2, v5(d−1)−3, v5(d−1)−4}

are three cliques of four unresolved vertices. In order to simultaneously resolve
these cliques with our three remaining vertices, we need a vertex that makes
two distinct cuts in the clique {v5(d−1), v5(d−1)−1, v5(d−1)−2, v5(d−1)−3} which is
done with a vertex antipodal that clique. So, the only way to resolve these
cliques is if vn−3 ∈ W but then we only have two vertices left to take to be in W

after v0, vn−6, vn−3 which is insufficient for resolving the set of unresolved ver-
tices {vn−1, vn−2, vn−4, vn−5} since subsequent vertices in W can only make at
most one distinct cut in the set yet we need to make a total of three distinct cuts.

Case 3: Say vn−11 ∈ W . Then

{vn−1, vn−2, vn−3, vn−4, vn−5}
{vn−5, vn−6, vn−7, vn−8, vn−9}

are two consecutive cliques of five vertices that are unresolved. Since we can only
use at most three additional vertices to resolve these cliques, we need the three
additional vertices in W to be antipodal to the cliques in a way that creates
eight distinct cuts in total. So, the only way to obtain the required number of
distinct cuts for resolving the above cliques is if v5(d−2)−2, v5(d−1)−4, v5(d−1)−1

∈ W but then {v1, v2} remains a pair of unresolved vertices.
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Case 4: Say we take any one vertex from {vn−16, vn−21, . . . , vn−5(d−1)−1} to be
in W . Then

{vn−1, vn−2, vn−3, vn−4, vn−5}
{vn−6, vn−7, vn−8, vn−9, vn−10}
{vn−11, vn−12, vn−13, vn−14, vn−15}

are three consecutive cliques of five vertices that are unresolved. So we need
twelve distinct cuts to resolve the above cliques. Observe that since n ≡
3 mod 10 and t = 5, only the next two choices of vertices we take to be in
W will be able to make at most four distinct cuts in the above cliques and the
final choice of vertex that we take will then make at most three distinct cuts in
the above cliques. Figure 8 shows an example of how the final vertex we take
can only make at most three distinct cuts in the above cliques.

�

Figure 8: RW1∪W2
(C53(1, 2, . . . , 5))

Corollary 6 Let G = Cn(1, 2, . . . , 5) where n = 10k + 3. Then

β(G) =

{

5 if k = 1

6 if k ≥ 2
.

Proof: The value of β(G) when k ≥ 2 follows from [6] and Theorem 4. For
k = 1, observe that {v0, v1, v2, v4, v5} resolves G when n = 13.

�

In [15], Vetŕık showed that β(Cn(1, 2, . . . , t)) ≥ t for n ≥ t2 + 1 (See Propo-
sition 4 (1)). We now use an alternate proof to show that this bound holds for
all n. The result is stated in the following theorem for the congruence classes
modulo 2t for which we do not already have a better lower bound of t + 1 on
the metric dimension.
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Theorem 5 Let G = Cn(1, 2, . . . , t) where n ≡ r mod 2t and 3 ≤ r ≤ t, then
β(G) ≥ t.

Proof: Suppose to the contrary that β(G) ≤ t − 1. Let W be a resolving set
for G with v0 ∈ W . Consider the sets of vertices L+

1 = {v1, v2, . . . , vt} and
L−
1 = {vn−1, vn−2, . . . , vn−t}. Note that all of the vertices in L+

1 (L−
1 ) have

distance 1 from each other and from v0.

Case 1: Suppose (n − 1) mod 2t > t − 2. Then each of the t − 2 vertices
v ∈ W besides v0 will make at most one distinct cut in L+

1 . By Lemma 2, at
least one pair of vertices in L+

1 will be unresolved.

Case 2: Suppose (n − 1) mod 2t ≤ t − 2. We may resolve the vertices in
L+
1 by taking the t− 2 vertices at furthest distance from t− 2 consecutive ver-

tices in L+
1 . However, by doing this, each of the t− 2 vertices v ∈ W besides v0

will make at most one distinct cut in L+
1 so at least one pair of vertices in L+

1

will be left unresolved by the argument from the first case (Figure 9).

�

Figure 9: Case 1 and Case 2 respectively

The empirical evidence in the Appendix shows that for small values of n
and t, the metric dimension of β(Cn(1, 2, . . . , t)) seems to be t for some of the
smaller congruence classes of n modulo 2t. The next theorem shows that this
is always true when n = 2t+ r and 3 ≤ r ≤

⌊

t
2

⌋

+ 1.

Theorem 6 Let G = Cn(1, 2, . . . , t) where n = 2t + r and 3 ≤ r ≤ ⌊ t
2⌋ + 1,

then β(G) = t.

Proof: Let W1,W2 ⊆ V (G) where

W1 = {v0, v1, . . . , vr−2}
W2 = {vr, vr+1, . . . , vt}

Note that |W1| = r − 1 and |W2| = t− (r − 1). We have that the only vertices
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at distance d = 2 from vi ∈ W2 are vi+t+1, vi+t+2, . . . , vi+t+(r−1). Since the ver-
tices in W2 are consecutive, the vertices vn−1, vn−2, . . . , vn−t+1 all have unique
representations with respect to W2. Similarly, for vi ∈ W1, the only vertices at
distance 2 from vi are vi+t+1, vi+t+2, . . . , vi+t+(r−1), and since the vertices in
W1 are consecutive, the vertices vt+1, vt+2, . . . , vt+2r−3 all have unique repre-
sentations with respect to W1. Also, it is clear that the only vertex which has
distance 1 to all of the vertices in W1 ∪W2 is vr−1. Thus all of the vertices in
the resolving hypergraph RW1∪W2

(G) are resolved (Figure 10). It follows from
Theorem 5 that β(G) = t under these conditions.

�

Figure 10: C15(1, 2, . . . , 6)

From Proposition 4 and Theorem 1, it follows that β(Cn(1, 2, . . . , t)) ≥ t+1
for n ≡ 1 mod 2t. We improve this bound slightly in the next theorem.

Theorem 7 Let G = Cn(1, 2, . . . , t) where t ≥ 2 and n ≡ 1 mod 2t, then
β(G) ≥ t+ 2.

Proof: Let W be a resolving set for G and suppose to the contrary that
|W | ≤ t + 1, where v0 ∈ W . We consider the vertices on the v1 − vdt path
of the outer cycle as the right side of the graph. Similarly, the vertices on
the vn−1 − vn−dt path of the outer cycle will be considered the left side of the
graph. In order to resolve G, some vertex v ∈ W ∩ Lj must create a sep-
arating line in the resolving hypergraph R{v,v0}(G) such that vn−dt and vdt
in Ld are partitioned into separate sets. The only vertices that can do this
have a nonnegative integer multiple of t distance from v0 on either the left
or right side of the outer cycle. By symmetry, we consider only the vertices
vn−t, vn−2t, . . . , vn−dt as possible choices for v. Note that taking any of these
vertices to be in W leaves 2d − j consecutive cliques of unresolved vertices,
where each clique has cardinality t. By Lemma 2, subsequent vertices in W

beyond v0 and v must not leave an unresolved clique of cardinality t. In ad-
dition, the subsequent vertices beyond v0 and v must each create distinct cuts
in both {vdt+1, vdt+2, . . . , vdt+t} and {vn−dt−1, vn−dt−2, . . . , vn−dt−t}. Thus, no
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two vertices on the same side of the outer cycle may share the same congru-
ence modulo t for otherwise both vertices will create the same cut in either
{vtd+1, vtd+2, . . . , vtd+t} or {vn−dt−1, vn−dt−2, . . . , vn−dt−t}. Note that the or-
der in which we choose the vertices for W does not matter. So, the subsequent
choices of vertices must belong to one of the sets

{vdt−1, vdt−2, . . . , vdt−(t−2)}

{v(d−1)t−1, v(d−1)t−2, . . . , v(d−1)t−(t−2)}

...

{vjt−1, vjt−2, . . . , vjt−(t−2)}

Since the j sets listed above contain t− 2 vertices of unique congruence modulo
t, we only have t−2 additional choices of vertices to be in W that do not leave a
clique of t (Figure 11). This means that there are only t−2 choices of vertices to
be in W that make distinct cuts in every clique of t in the resolving hypergraph
R{v,v0}(G) yet we need the t−1 vertices to each make these distinct cuts. Seeing
that we have at most t − 1 additional vertices to take in W beyond v0 and v,
but we only have t− 2 possible choices of vertices to resolve the 2d− j cliques
of t, by Lemma 2, β(G) ≥ t+ 2.

�

Figure 11: R{v,v0}(C41(1, 2, 3, 4)); The colored vertices are the only choices that
do not leave a clique of t

From Grigorious’ result in Proposition 2, we know that β(Cn(1, 2, . . . , t)) ≤
r− 1 when n = 2tk+ r for r ∈ {2t, 2t+1}. In the next two results, we improve
this upper bound to 2t− 2.

Theorem 8 Let G = Cn(1, 2, . . . , t) where n ≡ 1 mod 2t and t ≥ 4, then
β(G) ≤ 2t− 2.
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Proof: Let n = 2tk+(2t+1). Then diam(G) = k+1. Let W1,W2,W3 ⊆ V (G)
where

W1 = {v0, vn−t+1, vtk+3, vn−t(k+1)+1}
W2 = {v3, v4, . . . , vt}
W3 = {vn−t(k+1)+3, vn−t(k+1)+4, . . . , vn−t(k+1)+(t−2)}

Note that |W1| = 4, |W2| = t − 2, and |W3| = t − 4. For any t, the vertex
vi for i ∈ {3, 4, . . . , t} will always have distance j from only the first tj closest
vertices from vi on the outer cycle for j ∈ {1, 2, . . . , d} (Figure 12 shows the
case where t = 5 and k = 2. For k ≥ 2, each of the layers L2, . . . , Lk in Rv0(G)
have the same cut pattern as this example.)

When t = 4, the sets of vertices left unresolved by W1 are

{vn−2, vn−1, v1}
{vkt+2, vkt+4, vkt+5}
{vt−1, vt−2}, {v2t−1, v2t−2}, . . . , {vkt−1, vkt−2}

We have:

d(v3, vn−2) = d(v3, vn−1) + 1
d(v3, vkt+4) = d(v3, vkt+2) + 1
d(v3, vxt−1) = d(v3, vxt−2) + 1 for x ∈ {1, 2, . . . , k}

d(v4, vn−1) = d(v3, v1) + 1
d(v4, vkt+5) = d(v3, vkt+4) + 1

So taking W1 ∪W2 resolves these sets. Thus β(G) ≤ t + 2 when t = 4. Since
t+ 2 = 2t− 2 when t = 4, we can say β(G) ≤ 2t− 2 when t = 4. If t > 4, the
set of vertices left unresolved by W1 are resolved by W2 in a similar way as for
t = 4, except for the set

R = {vn−t(k+1)+3, vn−t(k+1)+4, . . . , vn−t(k+1)+(t−1)}

Since |R| = t − 3, taking any t − 4 vertices from R will resolve G. Specifi-
cally, taking W1 ∪W2 ∪W3 resolves G, so β(G) ≤ 2t− 2.

�
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Figure 12: RW1∪W2
(C31(1, 2, . . . , 5))

Theorem 9 Let G = Cn(1, 2, . . . , t) where n ≡ 0 mod 2t and t ≥ 5, then
β(G) ≤ 2t− 2.

Proof: Let n = 2tk + 2t. Then the diameter is d = k + 1. Let W1,W2,W3 ⊆
V (G) where

W1 = {v0, vn−t+1, vtk+3, vn−t(k+1)+1, vn−t(k+1)+2}
W2 = {v3, v4, . . . , vt}
W3 = {vn−t(k+1)+4, vn−t(k+1)+5, . . . , vn−t(k+1)+(t−2)}

Note that |W1| = 5, |W2| = t − 2, and |W3| = t − 5. For any t, the vertex
vi for i ∈ {3, 4, . . . , t} will always have distance j from only the first tj closest
vertices from vi on the outer cycle for j ∈ {1, 2, . . . , k+1} (Figure 13 shows the
case for t = 7 and k = 2. For k ≥ 2, each of the layers L2, . . . , Lk in Rv0(G)
have the same cut pattern as this example.) When t = 5, the sets of vertices
left unresolved by W1 are

{vn−2, vn−1, v1},
{vkt+2, vkt+4, vkt+5}
{vt−1, vt−2, vt−3}, {v2t−1, v2t−2, v2t−3}, . . . , {vkt−1, vkt−2, vkt−3}

We have:

d(v3, vkt+4) = d(v3, vkt+2) + 1
d(v3, vxt−2) = d(v3, vxt−3) + 1 for x ∈ {1, 2, . . . , d− 1}

d(v4, vn−2) = d(v4, vn−1) + 1
d(v4, vxt−1) = d(v3, vxt−2) + 1

d(v5, vn−1) = d(v5, v1) + 1.

So taking W1 ∪ W2 resolves these sets. Thus for t = 5, β(G) ≤ t + 3. But
t+3 = 2t− 2 in this case, so we can say β(G) ≤ 2t− 2 when t = 5. When t > 5,
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the set of vertices left unresolved by W1 are resolved by W2 in a similar way as
for t = 5, except for the set

R = {vn−t(k+1)+4, vn−t(k+1)+5, . . . , vn−t(k+1)+(t−1)}

Since |R| = t − 4, taking any t − 5 vertices from R will resolve G. Specifi-
cally, taking W1 ∪W2 ∪W3 resolves G so β(G) ≤ 2t− 2.

�

Figure 13: RW1∪W2
(C42(1, 2, . . . , 7))

Theorem 10 If G = Cn(1, 2, 3, 4) where n ≡ 0 mod 8 then β(G) ≤ 6.

Proof: Let n = 8k + 8. Then diam(G) = k + 1. Let W1,W2 ⊆ V (G) where

W1 = {v0, v2, v3, vn−3}
W2 = {vn−kt−1, vn−kt−2}

The vertices left unresolved by W1 are

{vn−1, v1}
{vn−kt−1, vn−kt−2, vn−kt−3}
{vkt+1, vkt+2}

A vertex v will always have distance j from only the first tj closest vertices
from v on the outer cycle for j ∈ {1, 2, . . . , k + 1} (Figure 14 shows the case
where t = 4 and k = 4. For each k ≥ 2, each of the layers L2, . . . , Lk in Rv0(G)
have the same cut pattern as this example.). We have:

d(vn−kt−1, v1) = d(vn−kt−1, vn−1) + 1
d(vn−kt−2, vkt+1) = d(vn−kt−2, vkt+2) + 1

So taking W1 ∪W2 resolves these sets. Thus β(G) ≤ 2t− 2 = 6.
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�

Figure 14: RW1
(C40(1, 2, 3, 4))

The following corollary comes from Theorems 8, 9, and 10.

Corollary 7 If n ≡ 0 mod 2t or n ≡ 1 mod 2t where t ≥ 4 then
β(Cn(1, 2, . . . , t)) ≤ 2t− 2.

Note that when n ≡ 0 mod 2t and t is even, the bound β(Cn(1, 2, . . . , t)) ≤
3t
2

presented in [15] is better (see Proposition 3). The next result follows from
Theorems 7 and 10.

Corollary 8 If n ≡ 1 mod 8 then β(Cn(1, 2, 3, 4)) = 6.

From previous results and from the empirical data in the Appendix, it seems
that β(Cn(1, 2, . . . , t)) depends on the congruence class of n modulo 2t. In the
next three theorems, we show that this is indeed true for large enough n.

Theorem 11 Let G = Cn(1, 2, . . . , t) and G′ = Cn+2t(1, 2, . . . , t) where n =
2tk + r. If k ≥ 3, then β(G′) ≤ β(G).

Proof: We obtain Cn+2t(1, 2, . . . , t) from Cn(1, 2, . . . , t) by adding one set of
2t vertices in Li of Cn(1, 2, . . . , t) for some i 6∈ {0, 1, d}. We can assume that v0
is in both W and W ′. Notice that vertices v ∈ Lj ∩ W and the distinct cuts
that are made in these Lj remain where they are in the Lj upon adding the 2t
vertices to Li. Observe that for every vertex v ∈ Lj ∩W , the distinct cuts that
are made in the resolving hypergraph R{v,v0}(G

′) are the same in Li as they are
in R{v,v0}(G) for every i 6∈ Lj ∩W . So the vertices in Lj ∩W will still leave the
same distinct cuts in Li if they did so before adding the 2t vertices (Figure 15).
Thus the vertices in V (G′) are resolved if they were resolved in V (G) before
adding the 2t vertices.

�
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Figure 15: C25(1, 2, 3, 4) and C33(1, 2, 3, 4) respectively

Theorem 12 Let G = Cn(1, 2, . . . , t) and G′ = Cn+2t(1, 2, . . . , t) where n =
2tk + r. If

2 ≤ r ≤ t+ 2 and k > t− 1 or
t+ 3 ≤ r ≤ 2t− 2 and k > r − 3 or
2t− 1 ≤ r ≤ 2t+ 1 and k > 2t− 4

then β(G) ≤ β(G′).

Proof: Let W be a metric basis for G and W ′ be a metric basis for G′

and suppose that v0 is in both W and W ′. We obtain Cn(1, 2, . . . , t) from
Cn+2t(1, 2, . . . , t) by removing one set of 2t vertices in Li of Cn+2t(1, 2, . . . , t)
where Li does not contain vertices in the metric basis. We can guarantee that
a Li exists because the k + 1 choices of sets of 2t vertices from Lj to remove
from V (G′) is greater than our best known upper bound given a congruence
class of n modulo 2t. Notice that vertices v′ ∈ Lj ∩ W ′ and the distinct cuts
that are made in these Lj remain where they are upon removing the 2t vertices
from Li. Observe that for every vertex v′ ∈ Lj ∩W ′, the distinct cuts that are
made in the resolving hypergraph R{v′,v0}(G) are the same in Li as they are in
R{v′,v0}(G

′) for every i 6∈ Lj ∩W ′. So the vertices in Lj ∩W ′ will still leave the
same distinct cuts in Li if they did so before removing the 2t vertices. Thus the
vertices in V (G) are resolved if they were resolved in V (G′) before removing the
2t vertices.

�

The next corollary follows from Theorems 11 and 12.

Corollary 9 Let G = Cn(1, 2, . . . , t) and G′ = Cn+2t(1, 2, . . . , t) where n =
2tk + r and t ≥ 4. If

2 ≤ r ≤ t+ 2 and k > t− 1 or
t+ 3 ≤ r ≤ 2t− 2 and k > r − 3 or
2t− 1 ≤ r ≤ 2t+ 1 and k > 2t− 4

then β(G) = β(G′).
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The following theorem shows that if the vertices in the metric basis belong
only to L0, L1, or Ld, then β(Cn(1, 2, . . . , t)) = β(Cn+2t(1, 2, . . . , t)) when k is
at least three. Although we could not prove that there always exists a metric
basis where vertices belong to just L0, L1, or Ld, it may be possible to show
that such a metric basis exists for certain t or certain congruence classes of n
modulo 2t, in which case this result could be of some use.

Theorem 13 Let G = Cn(1, 2, . . . , t) and G′ = Cn+2t(1, 2, . . . , t) where n =
2tk+ r and k ≥ 3. If W is a metric basis for G and W ′ is a metric basis for G′

where all vertices in W and W ′ belong to L0, L1, or Ld, then β(G) = β(G′).

Proof: We obtain Cn(1, 2, . . . , t) from Cn+2t(1, 2, . . . , t) by removing one set of
2t vertices in Li of Cn+2t(1, 2, . . . , t) for some i 6∈ {0, 1, d}. Similarly, we obtain
Cn+2t(1, 2, . . . , t) from Cn(1, 2, . . . , t) by adding one set of 2t vertices in Li of
Cn(1, 2, . . . , t) for some i 6∈ {0, 1, d}. We can assume that v0 is in both W and
W ′. Notice that since the vertices in the metric basis for G and G′ remain
where they are in L0, L1, or Ld, the separating lines made in L0, L1, and Ld

remain where they are when we add (or remove) the 2t vertices in Li for some
i 6∈ {0, 1, d}. Observe that for every vertex v ∈ L1 ∩W (or v′ ∈ L1 ∩W ′), the
separating lines made in the resolving hypergraph R{v,v0}(G) or R{v′,v0}(G

′) are
the same within every Li for i 6∈ {0, 1, d}. So the vertices in L1 will still leave
the same separating lines in Li if they did so before adding (or removing) the 2t
vertices. Similar arguments holds for each v ∈ Ld ∩W (or v′ ∈ Ld ∩W ′). Thus
the vertices in V (G′) are resolved if they were resolved in V (G) before adding
the 2t vertices and the vertices in V (G) are resolved if they were resolved in
V (G′) before removing the 2t vertices.

�

3 The metric dimension of Cartesian products

of circulant graphs

We are motivated to study the metric dimension of Cartesian products of the
circulant graphs Cn(1, 2, . . . , t) since their metric dimension is equal to the met-
ric dimension of Cayley hypergraphs on finite Abelian groups. Let Γ be a group,
let Ω ⊆ Γ\{1}, and let t be an integer such that 2 ≤ t ≤ max{|ω| : ω ∈ Ω}. The
t-Cayley hypergraph of Γ over Ω, denoted H = t-Cay[Γ : Ω], is the hypergraph
with vertex set Γ in which a subset S ⊆ Γ is in E(H) if and only if there is x ∈ Γ
and ω ∈ Ω such that S = {xωi : 0 ≤ i ≤ t−1}. Note that a 2-Cayley hypergraph
is a Cayley graph. This definition is due to Buratti [3], and is a subclass of the
more general Cayley hypergraphs, or group hypergraphs which were defined by
Shee in [12]. Specifically, we consider the t-Cayley hypergraph H = t-Cay(Γ,Ω)
where Γ is a finite Abelian group, so we may assume the Γ is a direct product of
cyclic groups of prime-power order, say Γ = Zn1

⊕

Zn2

⊕

· · ·
⊕

Zns
where ni

is a prime-power for 1 ≤ i ≤ s. The canonical set of generators for this group is

Ω = {(1, 0, . . . , 0), (0, 1, 0, . . . , 0), . . . , (0, 0, . . . , 0, 1)}
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and so we require 2 ≤ t ≤ max{ni : 1 ≤ i ≤ s}. It was shown in [2] that this
Cayley hypergraph has the same metric dimension as the Cartesian product

Cn1
(1, 2, . . . , t− 1)�Cn2

(1, 2, . . . , t− 1)� · · ·�Cns
(1, 2, . . . , t− 1),

and in this section we establish better bounds on their metric dimension. We
start with a technical lemma.

Lemma 3 Let G = Cn(1, 2, . . . , t) and let v0, vp, vq ∈ V (G). If d(vp, v0) <

d(vq, v0), then there exists a vertex vd ∈ V (G) at diameter distance from v0
such that d(vp, vd) > d(vq , vd).

Proof: Let d(vp, v0) < d(vq, v0). Then vp and vq must be in different Lj such
that vp is in a Lj closer to v0. So take vp ∈ Lp and vq ∈ Lq for 1 ≤ p < q ≤ d.
Let VR = {v1, v2, . . . , vtd−1} be the set of vertices on the right side of the outer
cycle from v0 and VL = {vn−1, vn−2, . . . , vn−td−1} be the set of vertices on the
left side of the outer cycle from v0.

Case 1: Assume vp, vq ∈ VR or vp, vq ∈ VL. We consider only the former
since the argument for the latter is similar. Then d(vp, vt(d−1)+1) = d − p and
d(vq, vt(d−1)+1) = d− q. Thus d(vp, vt(d−1)+1) > d(vq, vt(d−1)+1) since p < q.

Case 2: Assume vp ∈ VR and vq ∈ VL. Then d(vp, vn−t(d−1)−1) = d − p

and d(vq , vn−t(d−1)−1) = d − q. Thus d(vp, vn−t(d−1)−1) > d(vq, vn−t(d−1)−1)
since p < q.

�

Theorem 14 Let H be any graph and G = Cn(1, 2, . . . , t) where n = 2tk + r

for 1 ≤ r ≤ 2t, then β(H�G) ≤ β(H) + max{r, t+ 1}.

Proof: Note that H�G consists of n copies of H labeled H1, H2, . . . , Hn where
corresponding vertices in each copy form a copy ofG. LetW = {w1, w2, . . . , wm}
be a resolving set for H . Now let Wi = {w1i, w2i, . . . , wmi} be the set of vertices
of Hi corresponding to W in H for i ∈ {1, 2, . . . , n}. We show that either W1 ∪
{w1(tk+1), w1(tk+2), . . . , w1(tk+r)} or W1 ∪ {w1(tk+1), w1(tk+2), . . . , w1(tk+t+1)} is
a resolving set for G′ = H�G. Let u and v be any two vertices of G′. For any
l ∈ {1, 2, . . . , n}, let ul, vl ∈ G be the vertices that correspond to u and v in Hl,
the l − th copy of H .

Case 1: Suppose u and v belong to the same Hi. Let u1 and v1 be the vertices
of H1 that correspond to u and v in H . Since u and v are in the same Hi,
dG′(u, u1) = dG′(v, v1). Since W resolves H , there is some wq ∈ W such that
dH1

(u1, w1q) 6= dH1
(v1, w1q). But dG′(u,w1q) = dG′(u, u1) + dG′(u1, w1q) and

dG′(v, w1q) = dG′(v, u1) + dG′(v1, w1q) so dG′(u,w1q) 6= dG′(v, w1q).

Case 2: Suppose u and v belong to different Hi. Let u ∈ V (Hi) and v ∈ V (Hj)
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for 1 ≤ i < j ≤ n. Let u1, v1 ∈ H1 and uk, vk ∈ Hk be the vertices that corre-
spond to u and v.

Case 2.1: Assume dG′(u, u1) = dG′(v, v1) and u1 = v1. If we take a vertex
from each copy of Hx for x ∈ {tk+1, tk+2, . . . ,max{tk+ r, tk+ t+1}}, then u

and v will be resolved since there are at least t+1 consecutive vertices in the set.

Case 2.2: Assume 1 ≤ i < j ≤ tk + r or tk + r ≤ i < j ≤ n where
dG′(u, u1) 6= dG′(v, v1). We consider only the case where 1 ≤ i < j ≤ tk + r

since the argument for tk + r ≤ i < j ≤ n is similar. Then dG′(u, u1) <

dG′(v, v1) and dG′(u, ul) > dG′(v, vl) for some l ∈ {tk+ 1, tk+ 2, . . . , tk+ r} by
Lemma 2. In the case that dG′(u,w11) = dG′(v, w11), we have dG′(u1, w11) +
dG′(u, u1) = dG′(v1, w11) + dG′(v, v1). Hence dG′(u1, w11) > dG′(v1, w11) and
dG′(ul, w1l) > dG′(vl, w1l). Thus dG′(u,w1l) = dG′(u, ul) + dG′(ul, w1l) >

dG′(v, vl) + dG′(vl, w1l) = dG′(v, w1l). So w1l resolves u and v if w11 does
not.

Case 2.3: Assume 1 ≤ i ≤ tk + r < j ≤ n where dG′(u, u1) 6= dG′(v, v1).
In this case, there exists a l ∈ {tk + 1, tk + 2, . . . , tk + r} such that there exists
a shortest path from u1 to ul ∈ Gl which passes through u and has length d− 1
and there exists a shortest path from v1 to vl which passes through v and has
length d. Then the sum of the coordinates of u with respect to w11, w1l will
always have the same parity as d− 1 and the sum of the coordinates v with re-
spect to w11, w1l will always have the same parity as d. Thus the set {w11, w1l}
resolves u and v.

�

It is not difficult to prove that max{β(H), β(G)} ≤ β(H�G), and it was shown
in [4] as part of another result. Thus the following corollary comes from repeated
application of Theorem 14.

Corollary 10 Let ri correspond to Cni
(1, 2, . . . , ti) for ni = 2tiki + ri with

1 ≤ ri ≤ 2t and i ∈ {1, 2, . . . ,m}. Let r1 ≥ r2 ≥ . . . ≥ rm and set
H = Cn1

(1, 2, . . . , t1)�Cn2
(1, 2, . . . , t2)� . . .�Cnm

(1, 2, . . . , tm), then

max{β(Cni
(1, 2, . . . , ti))} ≤ β(H) ≤ β(Cn1

(1, 2, . . . , t1)) +
m
∑

i=2

max{ri, t+ 1}.

4 Summary

Here we state the bounds on the metric dimension of circulant graphs introduced
in this paper. Let G = Cn(1, 2, . . . , t) where n = 2tk + r, t ≥ 4 and k ≥ 2.

1. If n ≡ r mod 2t where t+ 1 ≤ r ≤ 2t+ 2 then β(G) ≥ t+ 1 (Theorem 1)

2. If n ≡ r mod 2t where 3 ≤ r ≤ t then β(G) ≥ t (Theorem 5)

3. If n ≡ r mod 2t where r = 2, t+ 1, t+ 2 then β(G) = t+ 1 (Theorem 1)
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4. If n ≡ 0 mod 2t where t is odd then t+ 1 ≤ β(G) ≤ 2t− 2 (Theorems 1,
9, and 10)

5. If n ≡ 1 mod 2t then t+ 2 ≤ β(G) ≤ 2t− 2 (Theorems 7 and 8)

6. If n ≡ 1 mod 8 where t = 4 then β(G) = 6 (Theorems 7 and 8)

7. If n ≡ (t+ 3) mod 2t where t is odd then β(G) = t+ 1 (Theorems 1 and
2)

Each of the tables in the Appendix of this paper list the metric dimension β

of the circulant Cn(1, 2, . . . , t) where n ≡ r mod 2t, for a given range of n. The
authors would like to thank Robert Bailey for computing these values using a
program in GAP. We make the following conjecture based on the data found in
the Appendix.

Conjecture 1 Let G = Cn(1, 2, . . . , t) where n = 2tk + r, t ≥ 4 and k ≥ 2.

1. If n ≡ t mod 2t where t is odd then β(G) = t+ 1

2. If n ≡ 0 mod 2t then β(G) ≥ t+ 2

3. If n ≡ (t+ 3) mod 2t where t is even then β(G) = t+ 2

4. If n ≡ r mod 2t where t is even, 3 ≤ r ≤ t− 1, and k = 1 then β(G) = t

A Appendix

r 2 3 4 5 6 7 0 1

β 5 4 4 5 5 6 6 6

Table 1: The metric dimension of Cn(1, 2, 3, 4), 10 ≤ n ≤ 26.

r 2 3 4 5 6 7 0 1

β 5 5 4 5 5 6 6 6

Table 2: The metric dimension of Cn(1, 2, 3, 4), 27 ≤ n ≤ 120.

r 2 3 4 5 6 7 8 9 0 1

β 6 5 6 6 6 6 6 7 7 8

Table 3: The metric dimension of Cn(1, 2, . . . , 5), 12 ≤ n ≤ 21.

25



r 2 3 4 5 6 7 8 9 0 1

β 6 6 6 6 6 6 6 6 7 8

Table 4: The metric dimension of Cn(1, 2, . . . , 5), 22 ≤ n ≤ 90.

r 2 3 4 5 6 7 8 9 10 11 0 1

β 7 6 6 6 6 7 7 8 8 8 8 9

Table 5: The metric dimension of Cn(1, 2, . . . , 6), 14 ≤ n ≤ 25.

r 2 3 4 5 6 7 8 9 10 11 0 1

β 7 6 6 6 6 7 7 8 7 8 8 9

Table 6: The metric dimension of Cn(1, 2, . . . , 6), 26 ≤ n ≤ 61.

r 2 3 4 5 6 7 8 9 10 11 0 1

β 7 7 6 6 6 7 7 8 7 8 8 9

Table 7: The metric dimension of Cn(1, 2, . . . , 6), 62 ≤ n ≤ 84.

r 2 3 4 5 6 7 8 9 10 11 12 13 0 1

β 8 7 7 7 7 8 8 8 8 9 9 10 10 10

Table 8: The metric dimension of Cn(1, 2, . . . , 7), 16 ≤ n ≤ 29.
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r 2 3 4 5 6 7 8 9 10 11 12 13 0 1

β 8 7 7 8 7 8 8 8 8 9 8 9 10 10

Table 9: The metric dimension of Cn(1, 2, . . . , 7), 30 ≤ n ≤ 43.

r 2 3 4 5 6 7 8 9 10 11 12 13 0 1

β 8 8 8 8 8 8 8 8 8 9 8 9 10 10

Table 10: The metric dimension of Cn(1, 2, . . . , 7), 44 ≤ n ≤ 68.

r 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 1

β 9 8 8 8 8 8 8 9 9 10 10 10 10 11 11 12

Table 11: The metric dimension of Cn(1, 2, . . . , 8), 18 ≤ n ≤ 33.

r 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0

β 9 8 8 8 8 9 8 9 9 10 10 10 10 10 11

Table 12: The metric dimension of Cn(1, 2, . . . , 8), 34 ≤ n ≤ 48.
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