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Abstract

Let G = (V,E) be a connected graph (or hypergraph) and let
d(x, y) denote the distance between vertices x, y ∈ V (G). A subset
W ⊆ V (G) is called a resolving set for G if for every pair of distinct
vertices x, y ∈ V (G), there is w ∈ W such that d(x,w) 6= d(y, w).
The minimum cardinality of a resolving set for G is called the metric
dimension of G, denoted by β(G).

In this paper we determine the exact metric dimension of the
circulant graphs Cn(1, 2) and Cn(1, 2, 3) for all n, extending previous
results due to Javaid and Rahim (2008) and Imran, Baig, Bokhary
and Javaid (2011). In particular, we show that β(Cn(1, 2)) = 4 if
n ≡ 1(mod 4) and β(Cn(1, 2)) = 3 otherwise. We also show that
β(Cn(1, 2, 3)) = 5 if n ≡ 1(mod 6) and β(Cn(1, 2, 3)) = 4 otherwise.
In addition, we bound the metric dimension of Cayley hypergraphs
on finite Abelian groups with the canonical set of generators, and we
show that the metric dimension of these hypergraphs is related to
the metric dimension of a Cartesian product of circulant graphs.
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1 Introduction

1.1 Definitions

A hypergraph is a pair (V,E) in which V is a finite set of vertices and E
is a collection of subsets of V called edges. A hypergraph H = (V,E)
is called k-uniform (or a k-hypergraph) if E is a set of k-element subsets
of V . A graph is a hypergraph in which the cardinality of every edge
is at most 2. A path of length k in a hypergraph (V,E) is a sequence
(v1, e1, v2, . . . , vk, ek, vk+1) in which vi ∈ V for i = 1, 2, . . . , k + 1, ei ∈ E
for i = 1, 2, . . . , k, {vi, vi+1} ⊆ ei for i = 1, 2, . . . , k, and vi 6= vj and ei 6= ej
for i 6= j. A hypergraph is connected if there is a path between every pair
of vertices. The distance between two vertices in a hypergraph is the length
of a shortest path between them. A vertex x in a hypergraph H is said
to resolve a pair u, v of vertices of H if the distance from u to x does not
equal the distance from v to x. A set W of vertices of H is a resolving set
for H if every pair of vertices of H is resolved by some vertex of W . The
smallest cardinality of a resolving set for H is called the metric dimension
of H, and is denoted by β(H).

The metric dimension appears to be related to both local and global
symmetry in graphs and hypergraphs. Consequently we are motivated to
examine the metric dimension of Cayley hypergraphs as these are classes
of vertex transitive hypergraphs for which degrees of symmetry may vary.
Cayley hypergraphs have the added advantage that distances between pairs
of vertices can be described algebraically, thus lending themselves more
readily to the use of algebraic tools when computing distance related in-
variants. Let Γ be a group, let Ω ⊆ Γ \ {1}, and let t be an integer such
that 2 ≤ t ≤ max{|ω| : ω ∈ Ω}. The t-Cayley hypergraph of Γ over Ω,
denoted H = t-Cay[Γ : Ω], is the hypergraph with vertex set Γ in which a
subset S ⊆ Γ is in E(H) if and only if there is x ∈ Γ and ω ∈ Ω such that
S = {xωi : 0 ≤ i ≤ t − 1}. Note that a 2-Cayley hypergraph is a Cayley
graph. This definition is due to Buratti [2], and is a subclass of the more
general Cayley hypergraphs, or group hypergraphs which were defined by
Shee in [12].

In this paper we investigate the metric dimension of Cayley hypergraphs
on finite Abelian groups, which we will see in Section 3 are related to the
metric dimension of Cartesian products of circulant graphs, which we now
define. For positive integers t and n, the circulant graph Cn(1, 2, . . . , t) is the
simple graph with vertex set Zn, the integers modulo n, in which distinct
vertices i and j are adjacent if and only if |i− j|(mod n) ≤ t. Thus vertex
i is adjacent to the vertices i− t, i− t+ 1, . . . , i− 1, i+ 1, . . . , i+ t− 1, i+
t (mod n) in Cn(1, 2, . . . , t). (See Figure 1.) Observe that the distance
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between two vertices i and j in G = Cn(1, 2, . . . , t) is given by

dG(i, j) =


⌈
|i−j|

t

⌉
, |i− j| ≤ n

2⌈
−|i−j|( mod n)

t

⌉
, |i− j| > n

2

.

The outer cycle of the circulant graph G = Cn(1, 2, . . . , t) is a spanning
subgraph of G in which vertex i is adjacent to exactly the vertices i+1 and
i− 1.

Figure 1: C13(1, 2)

The Cartesian product of graphs G1 and G2, denoted by G1�G2, is the
graph with vertex set V (G1)× V (G2) := {(x, y) : x ∈ V (G1), y ∈ V (G2)},
in which (x, y) is adjacent to (x′, y′) whenever x = x′ and yy′ ∈ E(G2), or
y = y′ and xx′ ∈ E(G1). Observe that if G1 and G2 are connected graphs,
then G1�G2 is connected. Assuming that isomorphic graphs are equal,
the Cartesian product is associative, so G1�G2� · · ·�Gd is well-defined
for graphs G1, G2, . . . , Gd. Moreover, for two vertices x = (x1, x2, . . . , xd)
and y = (y1, y2, . . . , yd) of the graph G = G1�G2� · · ·�Gd, the distance

dG(x,y) =
∑d

i=1 dGi(xi, yi).

1.2 History and layout of the paper

Motivated by the problem of efficiently locating a moving point or intruder
in a network, the concept of the metric dimension of a graph (2-hypergraph)
was first introduced by Slater [13, 14], and independently by Harary and
Melter [5]. Slater referred to the metric dimension of a graph as its location
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number and motivated the study of this invariant by its application to
the placement of a minimum number of sonar/loran detecting devices in a
network so that the position of every vertex in the network can be uniquely
described in terms of its distances to the devices in the set. Khuller et
al [9] studied the metric dimension as an application to the navigation of
robots in a graph space. A resolving set for a graph corresponds to a set of
landmark nodes in the graph, and it is assumed that a robot navigating a
graph can sense the distance to each of these landmarks and hence uniquely
determine its location in the graph. They gave a construction to show that
the problem of determining the metric dimension of a graph is NP-hard.
The problem received renewed attention in [4] as it also has applications
to a problem in pharmaceutical chemistry. The metric dimension of a
graph is related to several other well studied graph invariants such as the
determining number (the base size of its automorphism group), and a good
survey of these invariants and their relation to one another was written
by Bailey and Cameron in 2011 [1]. Since the problem of determining the
metric dimension of a graph is known to be NP-hard, researchers have
focussed on computing or bounding the metric dimension of certain classes
of graphs, and on constructing resolving sets for these classes of graphs.

Due to the fact that metric dimension has applications in network dis-
covery and verification, combinatorial optimization, chemistry, and many
other areas, this graph parameter has received a great deal of attention
from researchers recently. In particular, Javaid et al [8] and Imran et al [7]
have studied the metric dimension of circulant graphs, and obtained the
following results.

Proposition 1 [8] For the circulant graphs Cn(1, 2), we have

(1) β(Cn(1, 2)) = 3 for n ≡ 0, 2, 3 (mod 4), and

(2) β(Cn(1, 2)) ≤ 4 otherwise.

Proposition 2 [7] For the circulant graphs Cn(1, 2, 3), we have

(1) β(Cn(1, 2, 3)) = 4 for n ≡ 2, 3, 4, 5 (mod 6) and n ≥ 14.

(2) β(Cn(1, 2, 3)) ≤ 5 for n ≡ 0 (mod 6) and n ≥ 12.

(3) β(Cn(1, 2, 3)) ≤ 6 for n ≡ 1 (mod 6) and n ≥ 13.

In Section 2 we will extend these results to find the exact metric dimension
of both Cn(1, 2) and Cn(1, 2, 3) for all n (see Theorem 8).

Cáceres et al [3], and independently Peters-Franzen and Oellermann
[11], have studied the metric dimension of Cartesian products of graphs,
and they obtained the following result.
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Proposition 3 [3, 11] Let G be a graph and let n ≥ m ≥ 3. Then

β(G) ≤ β(G�Cm) ≤

{
β(G) + 1 if m is odd

β(G) + 2 if m is even
,

β(Cm�Cn) =

{
3, if m or n is odd

4, if m and n are both even
,

and

β(Cn�K2) =

{
2, if n is odd

3, if n is even
.

Cáceres et al [3] also bounded the metric dimension of a Cartesian prod-
uct of graphs in terms of another related parameter called the doubly re-
solving number, which we now define. Two vertices v and w of a graph G
are doubly resolved by x, y ∈ V (G) if d(v, x) − d(w, x) 6= d(v, y) − d(w, y).
A set S ⊆ V (G) doubly resolves G, and is a doubly resolving set for G, if
every pair of distinct vertices of G are doubly resolved by two vertices of
S. The doubly resolving number of G, denoted by ψ(G), is the minimum
cardinality of a doubly resolving set for G. Every graph with at least two
vertices has a doubly resolving set, so ψ(G) is well-defined for G 6= K1 (the
trivial graph). Note that if vertices x, y doubly resolve vertices v, w, then
either d(v, x)− d(w, x) 6= 0 or d(v, y)− d(w, y) 6= 0, and so at least one of x
or y resolves the pair v, w. Thus a doubly resolving set is also a resolving
set, and consequently β(G) ≤ ψ(G) for every nontrivial graph G. Also, it
was shown in [3] that ψ(G) ≤ |V (G)| − 1 for any connected graph G with
an least three vertices, since V (G) \ {x} is doubly resolves G for any vertex
x of degree at least 2. We have the following result.

Proposition 4 [3] For all graphs G1 and G2 6= K1,

max{β(G1), β(G2)} ≤ β(G1�G2) ≤ β(G1) + ψ(G2)− 1.

For n ≥ 3, any set of n − 1 vertices of the complete graph Kn is a doubly
resolving set, and clearly no smaller subset of vertices of Kn is doubly
resolving. It follows that ψ(Kn) = n − 1 for n ≥ 3. Thus Proposition 4
implies the following result.

Corollary 1 For a graph G and n ≥ 3, β(G) ≤ β(G�Kn) ≤ β(G) +n−2.

Cáceres et al also proved the following.

Proposition 5 [3] For n ≥ m ≥ 1 we have

β(Kn�Km) =

{⌊
2
3 (n+m− 1)

⌋
, if m ≤ n ≤ 2m− 1

n− 1, if n ≥ 2m− 1
.
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Earlier in [4], Chartrand et al obtained the following result.

Proposition 6 [4] For every connected graph G,
β(G) ≤ β(G�K2) ≤ β(G) + 1.

In Section 3, we will show that β(Cn(1, 2)�K2) = β(Cn(1, 2)) (See Theo-
rem 12).

More recently, Manrique and Arumugam [10] have initiated a study
of the metric dimension of hypergraphs. They showed that the metric
dimension of a hypergraph is equal to the metric dimension of a related
graph called its 2-section. For a hypergraph H = (V,E) and a positive
integer k, the k-section of H is the hypergraph Hk = (V,Ek), where for
every set e ⊆ V , e ∈ Ek if either |e| ≤ k and e ∈ E or |e| = k and e ⊆ f
for some f ∈ E. Note that the 2-section H2 of a hypergraph H is a graph.
The following result was proved in [10].

Proposition 7 For every hypergraph H and every positive integer k, a sub-
set W ⊆ V is resolving in H if and only if it is resolving in Hk. Therefore
β(H) = β(Hk).

In Section 3 we will show that the 2-section of a t-Cayley hypergraph
on a finite Abelian group with the canonical set of generators is a Cartesian
product of circulant graphs, and we will use this fact to bound the metric
dimension of these group hypergraphs.

2 Metric dimension of circulant graphs

In this section we will determine the metric dimension of the circulant graph
Cn(1, 2, . . . , t) for t ∈ {2, 3}, for all n. The main technique here is the use of
special hypergraphs related to a graph, called resolving hypergraphs, which
we now define.

Definition 1 For a graph G and a set of vertices W ∈ G, we define the
resolving hypergraph of G with respect to W is the hypergraph with vertex
set V (G), and hyperedges Wid , where Wid contains all vertices at distance
d from wi in G, for 1 ≤ d ≤ k (Figure 3), where k = diam(G). We denote
this hypergraph by RW (G), or simply RW if G is understood.

Remark 1 The diameter of G = Cn(1, 2, . . . , t) is the quotient upon divi-
sion of n by 2t. Note that when the number of vertices of G is given as
n = (2t)k + r, for 0 ≤ r ≤ 2t− 1, the diameter of G is k.
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Remark 2 Note that W is a resolving set of G if, and only if, each vertex
has a unique edge neighbourhood in RW (G). This is because two vertices
with the same edge neighbourhood in RW (G) are unresolved by W . In this
way, we see that W = {w1, w2, w3, w4} resolves C13(1, 2) (Figure 4).

Figure 2: R{w1}(C13(1, 2)) Figure 3: R{w1,w2,w3,w4}(C13(1, 2))

We now look at how a resolving hypergraph can be used to prove results
on the metric dimension of circulant graphs.

Lemma 1 No clique of three vertices in a graph G can be pairwise resolved
by a single vertex.

Proof: Let X = {x, y, z} be a clique of three vertices in G. Suppose x
and y are resolved by some vertex v in G. Since x and y are adjacent,
d(v, x) = d(v, y)± 1. Then, either d(v, z) = d(v, x), or d(v, z) = d(v, y) and
v does not resolve X.

Theorem 1 For n ≡ 1 (mod 4), β(Cn(1, 2)) ≥ 4.

Proof: Let G = Cn(1, 2) and n = 4k+ 1 for some integer k ≥ 2. Note that
k is the diameter of G. Suppose, to the contrary, that a metric basis W
exists for G such that |W | = 3. Say W = {w1, w2, w3}. By the symmetry
of G the choice of w1 is arbitrary, so we choose vertex 0 as w1. We now
consider three cases for the choice of w2.

Case 1: w2 is adjacent to w1 in the outer cycle of G (In this case, w2 = 1 or
w2 = n−1. Say the latter). This leaves vertices

{
n+1
2 − 1, n+1

2 , n+1
2 + 1

}
all

contained in both W1k and W2k in R{w1,w2} (Figure 4). Hence, vertices in

the set
{

n+1
2 − 1, n+1

2 , n+1
2 + 1

}
are pairwise unresolved by {w1, w2} in G.

By Lemma 1, no choice of w3 will resolves all of these pairs simultaneously.
This gives the desired contradiction. Hence, w2 cannot be adjacent to w1

in the outer cycle of G. Furthermore, since the order in which vertices for
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W are chosen does not matter, no two vertices of W may be adjacent in
the outer cycle of G.

Figure 4: R{w1,w2}(C13(1, 2)) Figure 5: R{w1,w2}(C13(1, 2))

Case 2: The distance between w1 and w2 in the outer cycle of G is even.
Say w2 = n − 2m for 1 ≤ m ≤ k. This leaves a sequence of disjoint
pairs of vertices with shared edge neighbourhoods in R{w1,w2}. These pairs
are {1, 2} , {3, 4} , {5, 6} , . . . , {n− 2m− 2, n− 2m− 1}. Label these unre-
solved pairs p1, p2, . . . , pl respectively (Figure 5), where l = n−2m−1

2 . By
Case 1, w3 cannot be adjacent to w1 or w2 in the outer cycle of G. If w3 is
a vertex on the shortest (even length) path between w1 and w2 on the outer
cycle of G, and is not adjacent to w1 or w2, then some pi is contained in
W3k (Figure 6). Hence G is not resolved by W . If w3 is a vertex on the odd
length path between w1 and w2 on the outer cycle, and w3 is not adjacent
to w1 or w2 on the outer cycle, then w3 belongs to some unresolved pair pi.
In this case, exactly one of pi−1 or pi+1 is contained in W31 , again leaving
G unresolved by W (Figure 7). This gives the desired contradiction. We
conclude that w2 cannot be at an even distance from w1 in the outer cycle
of G. Furthermore, no two vertices in W can be at an even distance from
each other in the outer cycle of G.

Figure 6: R{w1,w2,w3}(C13(1, 2)) Figure 7: R{w1,w2,w3}(C13(1, 2))
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Case 3: The distance between w1 and w2 in the outer cycle of G is
odd. Let w2 = n − 2m − 1 for 1 ≤ m ≤ k − 1. In this case, the ver-
tices between w1 and w2 are divided into a sequence of unresolved pairs,
{n− 1, n− 2} , {n− 3, n− 4} ,
. . . , {n− 2m,n− 2m+ 1}. Also, the middle two vertices of W1k , namely{

n+1
2 , n+1

2 − 1
}

, and the middle two vertices of W2k , namely{
n−4m−1

2 , n−4m−12 − 1
}

, are unresolved pairs. Denote these pw1
and pw2

,
respectively (Figure 8). Note that pw1

is contained in W2n−k
, and pw2

is
contained in W1n−k

.

Figure 8: R{w1,w2}(C13(1, 2))

Note that there is always an odd number of vertices between pw1
and

pw2 in the outer cycle of G. This is because G has an odd number of
vertices, but there is an even number of vertices between w1 and w2, and
the same number between w1 and pw2

as there are between w2 and pw1
.

Note that only vertices at odd distance from w1 can resolve the sequence
of pairs {n− 1, n− 2} , {n− 3, n− 4} ,
. . . , {n− 2m,n− 2m+ 1} left unresolved by w1 and w2, but the only vertex
at odd distance from w1 which also resolves the pair pw1 is the vertex in
pw1

closer to w1, which doesn’t resolve the pair pw2
. Hence there are no

valid choices for w3 in this case. Thus β(G) ≥ 4.

�

Theorem 2 For n ≡ 0 (mod 6), n ≥ 12, β((Cn(1, 2, 3)) ≤ 4.

Proof: Let G = Cn(1, 2, 3) and n = 6k for some integer k ≥ 2. Note that
k = diam(G). We claim that W =

{
0, 2, n2 ,

n
2 + 2

}
is a metric basis of G.

Observe that the following sets of vertices share edge neighbourhoods in
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R{0,2}:
{1, 3, n− 1} , {4, 5} , {n− 2, n− 3} , {6, n− 4} , {7, 8} , {n− 5, n− 6} , . . . ,{

n
2 + 5, n2 − 3

}
,
{

n
2 − 1, n2 − 2

}
,
{

n
2 + 4, n2 + 3

}
,
{

n
2 + 2, n2 + 1, n2

}
(Figure

9).

Figure 9: R{0,2}(C18(1, 2, 3))

We now list the vertices sharing edge neighbourhoods in R{n
2 ,n2 +2}. They

are exactly the following:{
n
2 − 1, n2 + 1, n2 + 3

}
,
{

n
2 + 4, n2 + 5

}
,
{

n
2 − 2, n2 − 3

}
,{

n
2 + 6, n2 − 4

}
, . . . , {n− 4, n− 5} , {6, 7} , {5, n− 3} , {n− 1, n− 2} , {3, 4} ,

{0, 1, 2}. Observe that no pair is left unresolved by both {0, 2} and
{

n
2 ,

n
2 + 2

}
in G. Thus, W is a metric basis of G, and β(G) ≤ 4.

�
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Figure 10: R{w1,w2}(C18(1, 2, 3))

Theorem 3 For n ≡ 0 (mod 6), n ≥ 12, β(Cn(1, 2, 3)) ≥ 4.

Proof: Let G = Cn(1, 2, 3) and n = 6k for some integer k ≥ 2. Note
that k = diam(G). Suppose that a metric basis W ∈ V (G) exists such
that |W | = 3. Say W = {w1, w2, w3}. By the symmetry of G, we
may take w1 = 0. Now, consider all the possible choices for w2. By
Lemma 1, w2 must be chosen in a way such that no clique of three ver-
tices are pairwise unresolved in G. The only choice of w2 satisfying this
condition is n

2 (Figure 10), as any other choice for w2 leaves a clique
of three pairwise unresolved vertices in G contained in W1k . The fol-
lowing are the sets of vertices sharing edge neighbourhoods in R{w1,w2}.

{n− 2, n− 1, 1, 2} , {n− 3, 3} , {n− 5, n− 4, 4, 5} , . . . ,
{

n
2 − 3, n2 + 3

}
,{

n
2 − 2, n2 − 1, n2 + 1, n2 + 2

}
. In this case, any choice of w3 will leave at

least one unresolved pair contained in W3k , giving the desired contradic-
tion. Hence, β(G) ≥ 4.

�

The following theorem follows immediately from Theorem 2 and Theorem
3.

Theorem 4 For n ≡ 0 (mod 6), n ≥ 12, β(Cn(1, 2, 3)) = 4.

Theorem 5 For n ≡ 1 (mod 6), β(Cn(1, 2, 3)) ≤ 5.

Proof: Let G = Cn(1, 2, 3). We claim that W =
{

0, 1, 5, 6, n+1
2 + 1

}
is

a resolving set for G. To show this, we first observe the sets of vertices
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sharing edge neighbourhoods in R{0,1}. These are exactly the following:
{2, 3, n− 1, n− 2} , {5, 6, n− 4, n− 5} , {8, 9, n− 7, n− 8} , . . . ,{

n−1
2 − 7, n−12 − 8, n−12 + 7, n−12 + 8

}
,{

n+1
2 − 4, n+1

2 − 5, n+1
2 + 4, n+1

2 + 5
}
,{

n+1
2 − 2, n+1

2 − 1, n+1
2 , n+1

2 + 1, n+1
2 + 2

}
(Figure 11).

Figure 11: R{0,1}(C19(1, 2, 3)) Figure 12: R{0,1,5,6}(C19(1, 2, 3))

Similarly, the sets of vertices sharing edge neighbourhoods in R{5,6} are
exactly
{3, 4, 7, 8} , {0, 1, 10, 11} , {n− 2, n− 3, 13, 14} , . . . ,{

n+1
2 − 2, n+1

2 − 3, n+1
2 + 12, n+1

2 + 13
}
,{

n+1
2 , n+1

2 + 1, n+1
2 + 9, n+1

2 + 10
}
,{

n+1
2 + 3, n+1

2 + 4, n+1
2 + 5, n+1

2 + 6, n−12 + 7
}

. The only pairs sharing edge

neighbourhoods in R{0,1,5,6} are
{

n+1
2 , n+1

2 + 1
}

and
{

n+1
2 + 4, n+1

2 + 5
}

(Figure 12). Since d(n+1
2 + 1, n+1

2 + 4) = 1 6= 2 = d(n+1
2 + 1, n+1

2 + 5),
n+1
2 + 1 resolves both remaining pairs. Hence W resolves G, and β(G) ≤ 5.

�

Theorem 6 For n ≡ 1 (mod 6), β(Cn(1, 2, 3)) ≥ 5.

Lemma 2 Suppose n 6≡ 3 (mod6). Then no clique of four vertices in a
circulant graph G = Cn(1, 2, 3) can be pairwise resolved by any two vertices.

Proof: Let X = {w, x, y, z} be a clique of four vertices in G. We may
assume that the sequence w, x, y, z are consecutive vertices which form an
increasing path on the outer cycle of G. Choose some vertex u in G. By
Lemma 1, if u leaves a clique of three pairwise unresolved vertices in X,
then no choice of a second vertex, v, resolves X. Thus, u must be chosen
such that u has distance d to two of the vertices of X and distance d+ 1 to
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the other two vertices of X. Given that the sequence w, x, y, z are consec-
utive vertices which form an increasing path on the outer cycle of G, there
are two cases to consider.

Case 1: d(u,w) = d(u, z) = d and d(u, x) = d(u, y) = d + 1. In this case,
u is antipodal to the clique formed by w, x, y, z on the outer cycle. That
is, |w − u| ≤ n/2 and |x− u| ≤ n/2 while |y − u| > n/2 and |z − u| > n/2.
Since d(u,w) = d(u, x) − 1 and d(u, z) = d(u, y) − 1, the distance formula
implies that |w − u| ≡ 0 (mod 3) and |u − z| ≡ 0 (mod 3), which implies
that n ≡ 3 (mod 6), giving a contradiction.

Case 2: d(u,w) = d(u, x) = d and d(u, y) = d(u, z) = d+1. Suppose that
v is chosen such that v resolves w and x. Then d(v, w) = d(v, x) ± 1. It
follows that d(v, y) = d(v, z) = d(v, x), except in the case where v is antipo-
dal to the clique formed by w, x, y, z on the outer cycle. In that case, once
can use a similar argument to that in Case 1 to show that n ≡ 3 (mod 6),
giving a contradiction. Hence the vertices of X are not resolved by u and
v.

Proof of Theorem 6: Let G = Cn(1, 2, 3), n = 6k + 1 for k ≥ 2 (Note
that k = diam(G). Suppose a resolving set W ∈ V (G) exists, such that
|W | = 4. Say W = {w1, w2, w3, w4}. By the symmetry of G, we may take
w1 = 0. If w2 = 1 or w2 = n− 1 (say the latter), then the vertices{

n−1
2 − 2, n−12 − 1, n−12 , n−12 + 1, n−12 + 2

}
share the edge neighbourhood

{W1k ,W2k} in R{w1,w2}. Since a clique of four vertices is contained in this
set, no choice of w3 and w4 completely resolve G by Lemma 2. If w2 = 2
or w2 = n− 2 (again, say the latter), then the vertices in the set{

n−1
2 − 2, n−12 − 1, n−12 , n−12 + 1

}
share the edge neighbourhood

{W1k ,W2k} in R{w1,w2}. Since this is a clique of four vertices, as previously,
no choice of w3 and w4 completely resolve G by Lemma 2. Hence, since
the order in which vertices are chosen for a resolving set does not matter,
no two vertices in W may be at a distance of one or two from each other in
the outer cycle of G. We now consider general cases for the choice of w2.
Let d denote the the distance from w1 to w2 in the outer cycle of G.

Case 1: d ≡ 0 (mod 3). By the symmetry of G, suppose w2 = 3m for 1 ≤
m ≤ k. The following are sets of vertices that share edge neighbourhoods in
R{w1,w2}: {1, 2},{4, 5},. . . ,{3m− 2, 3m− 1} and {3m+ 1, 3m+ 2, 3m+ 3} ,
{3m+ 4, 3m+ 5, 3m+ 6} , . . . , {n− 3, n− 2, n− 1}. Denote these sets of
three vertices p1, p2, . . . , pl respectively, where l = n−w2−1

3 . By Lemma 1,
w3 must be chosen such that no pi is contained in W3j , for 1 ≤ j ≤ k.
If w3 lies between w1 and w2, then some pi is contained in W3k . If w3
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is the first vertex (the vertex with the smallest index) in some pi, i > 1,
then W31 contains pi−1. Similarly, if w3 is the last vertex (the vertex
with the greatest index) in some pi, i < l, then W31 contains pi+1. Since
no two vertices in W may be separated by zero or one vertices in the
outer cycle of G, w3 cannot be either of the first two vertices in p1, or the
last two vertices in pl. Figure 15 shows all invalid choices for w3 crossed
out. Note that the only valid choices for w3 are the middle vertices in
p2, p3, . . . , pl−1. Denote these v1, v2, . . . , vl−2. Since the order of which w3

and w4 are chosen is irrelevant, these are also the only choices for w4. Ob-
serve that d(vi, 3m + 2) = d(vi, 3m + 3) = i for 1 ≤ i ≤ l − 1. Hence,
the pair {3m+ 2, 3m+ 3} will always be left unresolved by W , giving the
desired contradiction.

Figure 13: R{w1,w2}(C19(1, 2, 3)) Figure 14: R{w1,w2}(C25(1, 2, 3))

Case 2: d ≡ 1 (mod 3). By the symmetry of G, suppose w2 = 3m + 1
for 1 ≤ m ≤ k − 1. The following are sets of vertices that share edge
neighbourhoods in R{w1,w2} (although, they are not necessarily all of them).
{1, 2, 3},{4, 5, 6},. . .,
{3m− 2, 3m− 1, 3m}. These are the vertices between w1 and w2. There
are also {3m+ 2, 3m+ 3},{3m+ 5, 3m+ 6},. . .,{3k − 4, 3k − 3},
{3k − 1, 3k, 3k + 1} and {n− 1, n− 2},{n− 4, n− 5},
. . .,{3k + 3m+ 6, 3k + 3m+ 5},
{3k + 3m+ 3, 3k + 3m+ 2, 3k + 3m+ 1}. We now look at conditions for
choosing the two remaining vertices. By Lemma 1, the vertex w3 must
be chosen in a way that leaves no clique of three unresolved vertices in G.
The vertex w3 (or w4) cannot be at a distance 1, 2, or 3j, for 1 ≤ j ≤ k,
from w1 or w2 in the outer cycle of G (by case 1). This leaves the vertices
{5, 8, . . . , 3m− 4}, {3m+ 5, 3m+ 8, . . . , 3k − 1} and
{n− 4, n− 7, . . . , 3k + 3m+ 3} as the only valid choices for w3 and w4

(Figure 14). Note that the distance between vertices in the same set on the
outer cycle of G is a multiple of 3. The pair {3k, 3k + 1} is not resolved by

14



any of these vertices, since
d(3k, 5) = d(3k+1, 5) = k−1, d(3k, 8) = d(3k+1, 8) = k−2, . . . , d(3k, 3m−
4) = d(3k + 1, 3m− 4) = 3,
d(3k, 3m + 5) = d(3k + 1, 3m + 5) = k − m − 1, d(3k, 3m + 8) = d(3k +
1, 3m+ 8) = k −m− 2, . . . , d(3k, 3k − 1) = d(3k + 1, 3k − 1) = 1, and
d(3k, n − 4) = d(3k + 1, n − 4) = k − 1, d(3k, n − 7) = d(3k + 1, n − 7) =
k− 2, d(3k, 3k+ 3m+ 3) = d(3k+ 1, 3k+ 3m+ 3) = m+ 1. Hence, we have
the desired contradiction that W does not resolve G.

Case 3: d ≡ 2 (mod 3). By the symmetry of G, suppose w2 = 3m + 2
for 1 ≤ m ≤ k − 1. By the previous two cases, w3 (or w4) cannot be at a
distance 2, 3i, or 3j + 1, for 0 ≤ j ≤ k − 1, 0 ≤ i ≤ k, from w1 or w2 in the
outer cycle of G. Hence, w3 (and w4) must be at distances equivalent to 2
modulo 3 from both w1 and w2 in the outer cycle of G. We claim that there
are no such vertices in G. Note that the vertices between w2 and n−1

2 at a
distance 3l + 2 from w2 in the outer cycle of G, for some integer l, are at
distance (3l+2)+(3m+2) = 3(l+m+1)+1 from w1 in the outer cycle of G.
Thus, these vertices cannot be chosen for w3. By the symmetry of G, the
vertices from 3m+2+n+1

2 to n−1 may also not be chosen. A vertex between
w1 and w2 at distance 3l+ 2 from w1 in the outer cycle of G is at distance
(3m+2)−(3l+2) = 3(m−l) from w2 in the outer cycle ofG. Finally, a vertex
between n−1

2 and 3m+2+ n+1
2 at distance 3l+2 from w2 in the outer cycle of

G is at distance n−(3m+2)−(3l+2) = 6k+1−3m−3l−4 = 3(2k−m−l−1)
from w1 in the outer cycle of G. Hence, no vertices of G are valid choices
for w3 and w4. This gives the desired contradiction that W does not resolve
G. Thus, β(G) ≥ 5.

�

The following theorem follows immediately from Theorem 4 and Theorem
5.

Theorem 7 For n ≡ 1 (mod 6), β(Cn(1, 2, 3)) = 5.

In [4], Chartrand et al modeled the problem of finding the metric di-
mension of a graph as an integer programming problem. Using the Lindo
integer programming software package, we computed the exact metric di-
mension of the circulant graph Cn(1, 2, . . . , t) for 2 ≤ t ≤ 5 and 5 ≤ n ≤ 22.
The results are summarized in Table 1 and Table 2.
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t,n 5 6 7 8 9 10 11 12 13 14

2 4 3 3 3 4 3 3 3 4 3
3 4 5 6 4 4 4 4 4 5 4
4 4 5 6 7 8 5 4 4 5 5
5 4 5 6 7 8 9 10 6 5 6

Table 1: The metric dimension of Cn(1, 2, . . . , t), 5 ≤ n ≤ 14.

t,n 15 16 17 18 19 20 21 22

2 3 3 4 3 3 3 4 3
3 4 4 4 4 5 4 4 4
4 6 6 6 5 4 4 5 5
5 6 6 6 6 7 7 8 6

Table 2: The metric dimension of Cn(1, 2, . . . , t), 15 ≤ n ≤ 22.

Putting the empirical data in Tables 1 and 2 together with Proposi-
tions 1,2 and Theorems 1,4 and 7, we obtain the following theorem.

Theorem 8

(1) For n ≥ 6 we have

β(Cn(1, 2)) =

{
4 for n ≡ 1 (mod 4)

3 otherwise
.

(2) For n ≥ 8 we have

β(Cn(1, 2, 3)) =

{
5 for n ≡ 1 (mod 6)

4 otherwise
.

Note that if n ≤ 2t+ 1, then Cn(1, 2, . . . , t) is a complete graph and so the
metric dimension is n−1. Theorem 8 might lead one to conjecture that for
n ≥ 2t+ 2,

β(Cn(1, 2, . . . , t) =

{
t+ 2 if n ≡ 1 (mod 2t)

t+ 1 otherwise
,

but Table 2 shows that this is not the case for t = 4, 5. However, the metric
dimension of Cn(1, 2, . . . t) does appear to depend on the congruence class
of n modulo 2t.
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3 Metric dimension of Cayley hypergraphs

In this section we bound the metric dimension of Cayley hypergraphs on
finite Abelian groups with the canonical set of generators. Specifically,
we consider the t-Cayley hypergraph H = t-Cay(Γ,Ω) where Γ is a finite
Abelian group, so we may assume the Γ is a direct product of cyclic groups
of prime-power order, say Γ = Zn1

⊕
Zn2

⊕
· · ·
⊕
Zns

where ni is a prime-
power for 1 ≤ i ≤ s. The canonical set of generators for this group is

Ω = {(1, 0, . . . , 0), (0, 1, 0, . . . , 0), . . . , (0, 0, . . . , 0, 1)}

and so we require 2 ≤ t ≤ max{ni : 1 ≤ i ≤ s}. For this Cayley hypergraph
H, the 2-section H2 is isomorphic to the Cartesian product

Cn1
(1, 2, . . . , t− 1)�Cn2

(1, 2, . . . , t− 1)� · · ·�Cns
(1, 2, . . . , t− 1).

If t = 2, H is a Cayley graph, and we have the following result.

Theorem 9 Let H = 2-Cay(Γ,Ω) where Γ = Zn1

⊕
Zn2

⊕
· · ·
⊕
Zns and

Ω is the canonical set of generators.

(1) If ` of the terms in {n1, n2, . . . , ns} are odd or equal to 2, then

β(H) ≤

{
s+ 1, if ` = s

2s− `, if ` < s
.

(2) If Γ ∼= Zm

⊕
Zn where n ≥ m ≥ 3, then

β(H) =

{
3, if m or n is odd

4, if m and n are both even
.

(3) If Γ ∼= Zn

⊕
Z2, then

β(H) =

{
2, if n is odd

3, if n is even
.

Proof:

(1) The Cayley graph H ∼= Cn1
�Cn2

� · · ·�Cns
, and so in this case the

result follows from Proposition 3(1) and Proposition 6.

(2) In this case H ∼= Cm�Cn, and so the result follows from Proposi-
tion 3(2).

17



(3) In this case H ∼= Cn�K2, and so the result follows from Proposi-
tion 3(3).

�

In the case where t = max{ni : 1 ≤ i ≤ s}, the 2-section of H = t-
Cay(Γ,Ω) is a Cartesian product of complete graphs, and we obtain the
following result.

Theorem 10 Let H = t-Cay(Γ,Ω) where Γ = Zn1

⊕
Zn2

⊕
· · ·
⊕
Zns ,

n1 ≥ n2 ≥ · · · ≥ ns ≥ 2, and Ω is the canonical set of generators.

(1) If t = n1, then

n1 − 1 ≤ β(H) ≤ n1 − 1 +

s∑
i=2

max{(ni − 2), 1}.

(2) If s = 2 and t = n1 ≥ n2 ≥ 2 then

β(H) =

{⌊
2
3 (n1 + n2 − 1)

⌋
, if n2 ≤ n1 ≤ 2n2 − 1

n1 − 1, if n1 ≥ 2n2 − 1
.

Proof:

(1) In this case the 2-section H2
∼= Kn1�Kn2� · · ·Kns , and so the result

follows from Proposition 7 and Corollary 1.

(2) The 2-section H2
∼= Kn1�Kn2 , and so the result follows from Proposi-

tions 5 and 7.

�

We now bound the metric dimension of t-Cayley hypergraphs for t = 3
and t = 4.

Theorem 11 Let t ∈ {3, 4} and let H = t-Cay(Γ,Ω) where
Γ = Zn1

⊕
Zn2

⊕
· · ·
⊕

Zns
, n1 ≥ n2 ≥ · · · ≥ ns ≥ 2, and Ω is the

canonical set of generators. Then

t+ 1 ≤ β(H) ≤ t+ 1 +

s∑
i=2

max{(ni − 2), 1}

whenever n1 ≡ 1(mod 2t), and

t ≤ β(H) ≤ t+

s∑
i=2

max{(ni − 2), 1}

otherwise.
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Proof: The 2-section is

H2
∼= Cn1

(1, 2, . . . , t− 1)�Cn2
(1, 2, . . . , t− 1)� · · ·�Cns

(1, 2, . . . , t− 1)

and so the bounds follow from Propositions 4 and 7 and Theorem 8.

�

We now determine the exact metric dimension of H = 3-Cay(Γ,Ω) in
the case where Γ ∼= Z2

⊕
Zn and Ω is the canonical set of generators. The

2-section of this hypergraph is H2
∼= Cn(1, 2)�K2. In Theorem 12 we will

show that β(Cn(1, 2)�K2) = β(Cn(1, 2)), which will yield the exact value
for β(H) in Theorem 13. First, we examine the structure of the graph
Cn(1, 2, . . . , t)�K2.

Remark 3 The graph G = Cn(1, 2, . . . , t)�K2 contains two copies of
Cn(1, 2, . . . , t), G0 and G1, where corresponding vertices in G0 and G1 are
adjacent. The vertices are indexed by an ordered pair (i, j), where i is either
0 or 1 and 0 ≤ j ≤ n− 1. The vertices (0, j) make up G0, and the vertices
(1, j) make up G1 (Figure 15).

Figure 15: C12(1, 2)�K2
Figure 16: R{w1}((C12(1, 2)�K2)

Remark 4 The hyperedges of the resolving hypergraph
R{w1,w2}(Cn(1, 2)�K2) cannot be represented as convex shapes (Figure 16).
This makes it difficult to tell which vertices share edge neighbourhoods. To
make this clear, instead of adding hyperedges W2d for 1 ≤ d ≤ k + 1, we
add edges between every pair of vertices which are unresolved by both w1

and w2 in G (Figure 17).
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Figure 17: R{(0,0),(1,1)}((C12(1, 2)�K2)

Theorem 12 β(Cn(1, 2)�K2) = β(Cn(1, 2)).

Proof: By Proposition 6, β(Cn(1, 2)�K2) ≥ β(Cn(1, 2)). It remains to
show that β(Cn(1, 2)�K2) ≤ β(Cn(1, 2)). Let G = Cn(1, 2)�K2, n =
4k + r for 0 ≤ r ≤ 3 and some integer k ≥ 2. Take w1 = (0, 0) and
w2 = (1, 1). The pairs of vertices in G not resolved by either w1 or w2 are
{(1, 0), (0, 1)} , {(0, n− 1), (0, 2)} ,
{(1, n− 1), (1, 2)} , {(1, n− 2), (0, 3)} , {(0, n− 3), (0, 4)} , {(1, n− 3), (1, 4)} ,
{(1, n− 4), (0, 5)} , {(0, n− 5), (0, 6)} , {(1, n− 5), (1, 6)} , . . . (Figure 17).
The unresolved pairs contained in W1k and W1k+1

depend on the value of
r. We look at three cases for how this sequence of unresolved pairs ends.

Case 1: r = 0. In this case, the final unresolved pairs in G are as fol-
lows. . . . ,

{
(1, n2 + 2), (0, n2 − 1)

}
,
{

(0, n2 + 1), (0, n2 )
}
,
{

(1, n2 + 1), (1, n2 )
}

(Figure 17). In this case, taking w3 = (0, 4) resolves all remaining pairs.
To show this, let {(a, b), (x, y)} be any of the unresolved pairs previously
listed. observe that d((0, 4), (a, b)) > d((0, 4), (x, y)) for all of the unresolved
pairs, {(a, b), (x, y)}. Hence, when r = 0, β(G) ≤ 3 = β(Cn(1, 2)).

Case 2: r = 1. In this case, the final unresolved pairs in G are as follows.
. . . ,

{
(1, n−12 + 3), (0, n−12 − 1)

}
,
{

(1, n−12 + 1), (1, n−12 )
}
,{

(1, n−12 + 2), (1, n−12 )
}
,
{

(1, n−12 + 2), (1, n−12 + 1)
}
,{

(0, n−12 + 1), (0, n−12 )
}
,
{

(0, n−12 + 2), (0, n−12 )
}
,{

(0, n−12 + 2), (0, n−12 + 1)
}

(Figure 18). As previously, Let {(a, b), (x, y)}
be any of the unresolved pairs previously listed. Choosing w3 = (0, 4) re-
solves all remaining unresolved pairs, since
d((0, 4), (a, b)) > d((0, 4), (x, y)), except for

{
(1, n−12 + 2), (1, n−12 + 1)

}
and
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{
(0, n−12 + 2), (0, n−12 + 1)

}
. Taking w4 = (0, 3) resolves these last two

pairs. Thus, when r = 1, β(G) ≤ 4 = β(Cn(1, 2)).

Figure 18:
R{(0,0),(1,1)}(C13(1, 2)�K2)

Figure 19: R{(0,0),(1,1)}(C14(1, 2)�K2)

Case 3: r = 2. In this case, the final unresolved pairs in G are as follows.
. . . ,

{
(1, n2 + 3), (0, n2 − 2)

}
,
{

(0, n2 + 2), (0, n2 − 1)
}
,{

(1, n2 + 2), (1, n2 − 1)
}
,
{

(1, n2 + 1), (0, n2 )
}

(Figure 19). Let {(a, b), (x, y)}
be any of the unresolved pairs previously listed. Observe that
d((0, 4), (a, b)) > d((0, 4), (x, y)) for all of the unresolved pairs, {(a, b), (x, y)}.
Thus, w3 = (0, 4) resolves all the remaining unresolved pairs in G, and
β(G) ≤ 3 = β(Cn(1, 2)) whenever r = 2.

Figure 20: R{(0,0),(1,1)}((C15(1, 2)�K2)
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Case 4: r = 3 In this case, the final unresolved pairs in G are as follows.
. . . ,

{
(1, n−12 + 4), (0, n−12 − 2)

}
,
{

(0, n−12 + 3), (0, n−12 − 1)
}
,{

(1, n−12 + 3), (1, n−12 − 1)
}

(Figure 22). As previously, Let {(a, b), (x, y)}
be any of the unresolved pairs previously listed. Observe that
d((0, 3), (a, b)) > d((0, 3), (x, y)) for all of the unresolved pairs, {(a, b), (x, y)}.
Thus, w3 = (0, 3) resolves all the remaining unresolved pairs in G, and
β(G) ≤ 3 = β(Cn(1, 2)) whenever r = 3. Hence, β(Cn(1, 2)�K2) ≤
β(Cn(1, 2)) for all n.

�

Theorem 13 Let Γ = Z2

⊕
Zn, n ≥ 6, and let H = 3-Cay(Γ,Ω) where

Ω = {(1, 0), (0, 1)}. Then

β(H) =

{
4, n ≡ 1(mod 4)

3, otherwise

Proof: The 2-section H2
∼= Cn(1, 2)�K2, and so the result follows from

Proposition 7, Theorem 8(1) and Theorem 12.

�

The authors would like to thank the referee for valuable suggestions and
comments, which have clarified some proofs and improved the paper.
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